Appendix/SpecialFunctions

From jetwiki
Jump to navigation Jump to search


Special Functions

Gamma Function

Gamma Function

To insert a given equation into any Wiki document, type ...
{{ Math/Template_Name }}


 
 
See also …

Template_Name

Resulting Equation

EQ_Gamma01

Γ(z)Γ(1z)

=

πsin(πz)

|

for example, if
z(mn+12)

Γ(mn+12)Γ(nm+12)

=

π{sin[π2+π(mn)]}1

 

=

π(1)mn

DLMF §5.5(ii)

|
Valid for:

   z0,±1,±2,

|

Complete Elliptic Integrals

Complete Elliptic Integral …

To insert a given equation into any Wiki document, type ...
{{ Math/Template_Name }}


 
 
See also …

Template_Name

Resulting Equation

EQ_EllipticIntegral01

… of the First Kind

2K(k)π

=

1+(12)2k2+(1324)2k4+(135243)2k6+(1357273)2k8++[(2n1)!!2nn!]2k2n+

Gradshteyn & Ryzhik (1965), §8.113.1

EQ_EllipticIntegral03

… of the First Kind (alternate expression)

K(μ)

=

ln4k'+122(ln4k'212)(k)2+(1324)2(ln4k'212234)(k)4+(135246)2(ln4k'212234256)(k)6+

Gradshteyn & Ryzhik (1965), §8.113.3

where:   k'(1μ2)1/2

EQ_EllipticIntegral02

… of the Second Kind

2E(k)π

=

1122k21232242k4(135243)2k65(1357273)2k87[(2n1)!!2nn!]2k2n2n1

Gradshteyn & Ryzhik (1965), §8.114.1

EQ_EllipticIntegral04

… of the Second Kind (alternate expression)

E(μ)

=

1+12(ln4k112)(k)2+123224(ln4k212134)(k)4+1232522426(ln4k212234156)(k)6+

Gradshteyn & Ryzhik (1965), §8.114.3

where:   k'(1μ2)1/2

See also:

Toroidal Function Evaluations

Analytic Expressions & Plots

Toroidal Function Evaluations

To insert a given equation into any Wiki document, type ...
{{ Math/Template_Name }}


 
 
Graphical Representation
(see:  generic caption)

Template_Name

Resulting Equation

EQ_PminusHalf01

P12(z)

=

2π[2z+1]1/2K(z1z+1)

      for example …

P12(coshη)

=

[π2coshη2]1K(tanhη2)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.1)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.2)

NOTE: We have explicitly demonstrated that an alternate, equivalent expression is:

P12(coshη)

=

2π(sinhη)1/2kK(k)

      where:    

k

[2/(cothη+1)]1/2.

P0minus1Half
P0minus1Half

EQ_QminusHalf01

Q12(z)

=

2z+1K(2z+1)

      for example …

Q12(coshη)

=

2eη/2K(eη)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.3)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.4)

Q0minusHalf
Q0minusHalf

EQ_PplusHalf01

P+12(z)

=

2π[z+z21]1/2E(2(z21)1/2z+(z21)1/2)

      for example …

P+12(coshη)

=

2πeη/2E(1e2η)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.5)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.6)

NOTE: It appears as though an alternate, equivalent expression is:

P+12(coshη)

=

2π(sinhη)+1/2k1E(k)

      where:    

k

[2/(cothη+1)]1/2.

P0plusHalf
P0plusHalf

EQ_QplusHalf01

Q+12(z)

=

z2z+1K(2z+1)[2(z+1)]1/2E(2z+1)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.7)

Q0plusHalf
Q0plusHalf

EQ_Q1minusHalf01

Q121(z)

=

[12(z1)]1/2E(k)

where:   k=2z+1.

(see our associated derivation)

ABSQ1minusHalf
ABSQ1minusHalf

EQ_Q2minusHalf01

Q122(z)

=

4zE(k)(z1)K(k)[23(z+1)(z1)2]1/2

where:   k2z+1.

(see our associated derivation)

Q2minusHalf
Q2minusHalf

Caption for Plots

Caption for Plots:   Here we explain how we assembled the various plots — shown immediately above in the right-hand column of the "Toroidal Function Evaluations" table — that depict the behavior of various associated Legendre (toroidal) functions (see the related discussion) having varying half-integer degrees P120, P+120, Q120, Q+120, Q+320, and (in association with a separate related discussion) having varying order Q121, Q122.


For each choice of the integer indexes, n0 and m0, the relevant plot shows how the function, Xm12n(z), varies with z. (Click on the small plot image to view an enlarged image.) In each plot …

  • The solid green circular markers identify data that has been pulled directly from Table IX (p. 1923) of [MF53];
  • The solid orange circular markers identify function values that we have calculated using the relevant formulae as expressed herein in terms of the complete elliptic integrals, K(k) and E(k), where the relevant values of the elliptic integrals have been pulled directly from tabulated values published in pp. 535 - 537 of [CRC]. (See an accompanying sample of elliptic integral values extracted from [CRC].)
  • The dashed red curve was also derived using formulae expressed in terms of the complete elliptic integrals, but the values of the elliptic integrals have been calculated using (double-precision versions of) algorithms drawn from Numerical Recipes.


NOTE: The tabulated values of the function, Q121, that appear in Table IX (p. 1923) of [MF53] — also see immediately below — are all positive, whereas, according to our derivation, they should all be negative. Therefore, for comparison purposes of this specific function — both here and in our accompanying discussion — we have plotted the absolute value of the function, |Q121(z)|.


ADDITIONAL NOTE:   In Example 4 on p. 340 of Abramowitz & Stegun (1995), we can pull one additional data point for comparison; specifically, they provide a high-precision evaluation of Q120(z=2.6)=1.419337751. As can be seen in the table of function values immediately below, this is entirely consistent with the lower-precision value that we have extracted from [MF53], and exactly matches the double-precision value we have calculated based on the Numerical Recipes algorithm.

Example Recurrence Relations

The above Toroidal Function Evaluations table provides analytic expressions for the pair of foundation functions, P120(z) and P+120(z), and the associated pair of foundation functions, Q120(z) and Q+120(z). From either pair of foundation functions, expressions for all other zero-order, half-integer degree toroidal functions can be obtained using a relatively simple recurrence relation drawn from the "Key Equation,"

(νμ+1)Pν+1μ(z)

=

(2ν+1)zPνμ(z)(ν+μ)Pν1μ(z)

Abramowitz & Stegun (1995), p. 334, eq. (8.5.3)

NOTE: Qνμ, as well as Pνμ, satisfies this same recurrence relation.

Specifically, letting μ0 and ν(m12), for all m2, we have,

P0m12(z)

=

4[m12m1]zPm320(z)[2m32m1]Pm520(z);     and,

Qm120(z)

=

4[m12m1]zQm320(z)[2m32m1]Qm520(z).

As examples, these two relations have been used to generate columns of numbers in the comparison table shown below for, respectively, the toroidal functions, P+320(z) and Q+320(z). For order-1 and order-2 toroidal functions, the above table provides analytic expressions only for (the functions of the lowest half-integer degree) Q121(z) and Q122(z). But, as we have detailed in an accompanying discussion, additional order-1 and order-2 expressions can be straightforwardly derived by drawing upon another key recurrence relation, namely,

Pνμ+1(z)

=

(z21)12{(νμ)zPνμ(z)(ν+μ)Pν1μ(z)}

Abramowitz & Stegun (1995), p. 333, eq. (8.5.1)

NOTE: Qνμ, as well as Pνμ, satisfies this same recurrence relation.

Specifically, after adopting the association, ν(n12), we have, when μ=0,

Qn121(z)

=

(n12)(z21)12[zQn12(z)Qn32(z)]

    …    

for n1,

and, when μ=1,

Qn122(z)

=

(z21)12{(n32)zQn121(z)(n+12)Qn321(z)}

    …    

for n1.

As an example, the first of these two relations has been used to generate a column of numbers in the comparison table shown below for the toroidal function, Q+121(z).

Comparison with Table IX from MF53

To facilitate copying & pasting for immediate use by other researchers, here we present in a tab-delimited, plain-text format the evaluation of nine separate toroidal functions: (Top half of table) P120, P+120 and P+320; (Bottom half of table) Q120, Q121, Q122, Q+120, Q+121 and Q+320. Each function has been evaluated for approximately 23 different argument values in the range, 1.0z9.0, and, for each function, two columns of function values have been presented: (Left column) Low-precision evaluation extracted directly from Table IX (p. 1923) of [MF53]; (Right column) Our double-precision evaluation based on a set of Numerical Recipes algorithms. One exception: The value listed under the "MF53" column for the evaluation of Q120(z=2.6) is the high-precision value published on p. 340 of Abramowitz & Stegun (1995); notice that our high-precision evaluation matches all ten digits of their published value.


Top half of Table IX (p. 1923) of [MF53]

z	    P0m1Half(z)		   P0p1Half(z)		   P0p3Half(z)	
	 MF53	  Our Calc.	 MF53	  Our Calc.	 MF53	  Our Calc.	
1.0	1.0000			1.0000			1.0000		
1.2	0.9763	9.763155118E-01	1.0728	1.072784040E+00	1.3910	1.391015961E+00	
1.4	0.9549	9.549467781E-01	1.1416	1.141585331E+00	1.8126	1.812643692E+00	
1.6	0.9355	9.355074856E-01	1.2070	1.206963827E+00	2.2630	2.263020336E+00	
1.8	0.9177	9.176991005E-01	1.2694	1.269362428E+00	2.7406	2.740570128E+00	
2.0	0.9013	9.012862994E-01	1.3291	1.329138155E+00	3.2439	3.243939648E+00	
2.2	0.8861	8.860804115E-01	1.3866	1.386583505E+00	3.7719	3.771951476E+00	
2.4	0.8719	8.719279330E-01	1.4419	1.441941436E+00	4.3236	4.323569952E+00	
2.6	0.8587	8.587023595E-01	1.4954	1.495416274E+00	4.8979	4.897875630E+00	
2.8	0.8463	8.462982520E-01	1.5472	1.547181667E+00	5.4941	5.494045473E+00	
3.0	0.8346	8.346268417E-01	1.5974	1.597386605E+00	6.1113	6.111337473E+00	
3.5	0.8082	8.081851582E-01	1.7169	1.716877977E+00	7.7427	7.742702172E+00	
4.0	0.7850	7.849616703E-01	1.8290	1.828992729E+00	9.4930	9.492973996E+00	
4.5	0.7643	7.643076802E-01	1.9349	1.934919997E+00	11.3555	1.135475076E+01	
5.0	0.7457	7.457491873E-01	2.0356	2.035563839E+00	13.3220	1.332184253E+01	
5.5	0.7289	7.289297782E-01	2.1316	2.131629923E+00	15.3890	1.538897617E+01	
6.0	0.7136	7.135750093E-01	2.2237	2.223681177E+00	17.5520	1.755159108E+01	
6.5	0.6995	6.994692725E-01	2.3122	2.312174942E+00	19.8060	1.980569307E+01	
7.0	0.6864	6.864402503E-01	2.3975	2.397488600E+00	22.1480	2.214774685E+01	
7.5	0.6743	6.743481630E-01	2.4799	2.479937758E+00	24.5750	2.457459486E+01	
8.0	0.6631	6.630781433E-01	2.5598	2.559789460E+00	27.0830	2.708339486E+01	
8.5		6.525347093E-01		2.637271986E+00		2.967157094E+01	
9.0		6.426376817E-01		2.712582261E+00		3.233677457E+01	
Bottom half of Table IX (p. 1923) of [MF53]

ATTENTION:   Widen your browser window, or "zoom out," in order to obtain a proper view of the space-delimited columns of numbers in this table.

z	    Q0m1Half(z)		    Q1m1Half(z)			    Q2m1Half(z)		    Q0p1Half(z)		    Q1p1Half(z)			    Q0p3Half(z)
	 MF53	   Our Cal.	 MF53	   Our Calc.		 MF53	   Our Calc.	 M53	   Our Calc.	 MF53	   Our Calc.		 MF53	   Our Calc.
1.1 	2.8612	2.861192872E+00	2.3661	-2.366084077E+00	10.6440	1.064378304E+01	0.9788	9.787602829E-01	1.9471	-1.947110839E+00	0.4818	4.817841242E-01
1.2 	2.5010	2.500956508E+00	1.7349	-1.734890983E+00	5.6518	5.651832631E+00	0.6996	6.995548314E-01	1.2524	-1.252395745E+00	0.2856	2.856355610E-01
1.4 	2.1366	2.136571733E+00	1.2918	-1.291802851E+00	3.1575	3.157491205E+00	0.4598	4.597941602E-01	0.7618	-7.618218821E-01	0.14609	1.460918547E-01
1.6 	1.9229	1.922920866E+00	1.0943	-1.094337965E+00	2.3230	2.323018870E+00	0.3430	3.430180260E-01	0.5501	-5.500770475E-01	0.09080	9.079816684E-02
1.8 	1.7723	1.772268479E+00	0.9748	-9.748497733E-01	1.9018	1.901788930E+00	0.2720	2.720401772E-01	0.4285	-4.284853031E-01	0.06214	6.214026586E-02
2.0 	1.6566	1.656638170E+00	0.8918	-8.917931374E-01	1.6454	1.645348489E+00	0.2240	2.240142929E-01	0.3489	-3.488955345E-01	0.04516	4.515872426E-02
2.2 	1.5634	1.563378886E+00	0.8293	-8.292825549E-01	1.4712	1.471197798E+00	0.18932	1.893229696E-01	0.29263	-2.926294028E-01	0.03422	3.422108228E-02
2.4     1.4856	1.485653983E+00	0.7798	-7.797558474E-01	1.3441	1.344108936E+00	0.16312	1.631167365E-01	0.25076	-2.507568731E-01	0.02676	2.675556229E-02
2.6 1.419337751	1.419337751E+00	0.7391	-7.390875295E-01	1.2465	1.246521876E+00	0.14266	1.426580119E-01	0.21842	-2.184222751E-01	0.02143	2.143519083E-02
2.8	1.3617	1.361744950E+00	0.7048	-7.048053314E-01	1.1687	1.168702464E+00	0.12628	1.262756033E-01	0.19274	-1.927423405E-01	0.01751	1.751393553E-02
3.0	1.3110	1.311028777E+00	0.6753	-6.753219405E-01	1.1048	1.104816977E+00	0.11289	1.128885424E-01	0.17189	-1.718911443E-01	0.01454	1.454457729E-02
3.5	1.2064	1.206444997E+00	0.6163	-6.163068170E-01	0.9846	9.846190928E-01	0.08824	8.824567577E-02	0.13380	-1.338040913E-01	0.00966	9.664821286E-03
4.0	1.1242	1.124201960E+00	0.5713	-5.712994484E-01	0.8990	8.990205764E-01	0.07154	7.154134054E-02	0.10819	-1.081900595E-01	0.00682	6.819829619E-03
4.5	1.0572	1.057164923E+00	0.5353	-5.353494651E-01	0.8339	8.338659751E-01	0.05957	5.956966068E-02	0.08993	-8.992645608E-02	0.00503	5.029656514E-03
5.0	1.0011	1.001077380E+00	0.5057	-5.056928088E-01	0.7820	7.819717783E-01	0.05063	5.062950976E-02	0.07634	-7.633526879E-02	0.00384	3.837604899E-03
5.5	0.9532	9.532056775E-01	0.4806	-4.806378723E-01	0.7393	7.392682950E-01	0.04374	4.373774515E-02	0.06588	-6.588433822E-02	0.00301	3.008238619E-03
6.0	0.9117	9.116962715E-01	0.4591	-4.590784065E-01	0.7033	7.032568965E-01	0.03829	3.828867029E-02	0.05764	-5.763649873E-02	0.00241	2.410605139E-03
6.5	0.87524	8.752387206E-01	0.44025	-4.402537373E-01	0.67231	6.723067009E-01	0.03389	3.389003482E-02	0.05099	-5.098806037E-02	0.00197	1.967394932E-03
7.0	0.84288	8.428751774E-01	0.42362	-4.236198508E-01	0.64530	6.453008278E-01	0.03028	3.027740449E-02	0.04553	-4.553369214E-02	0.00163	1.630716095E-03
7.5	0.81389	8.138862008E-01	0.40877	-4.087751846E-01	0.62144	6.214442864E-01	0.02727	2.726650960E-02	0.04099	-4.099183107E-02	0.00137	1.369695722E-03
8.0	0.78772	7.877190099E-01	0.39542	-3.954155185E-01	0.60015	6.001530105E-01	0.02473	2.472532098E-02	0.03716	-3.716124286E-02	0.00116	1.163753807E-03
8.5		7.639406230E-01		-3.833053056E-01		5.809864341E-01		2.255696890E-02		-3.389458114E-02		9.987731857E-04
9.0		7.422062367E-01		-3.722587645E-01		5.636047532E-01		2.068890884E-02		-3.108168349E-02		8.648271474E-04

Relationships Between Various Associated Legendre Functions

Relationships Between Various Associated Legendre Functions

To insert a given equation into any Wiki document, type ...
{{ Math/Template_Name }}


 
 
See also …

Template_Name

Resulting Equation

EQ_Toroidal00

Pνn(z)

=

Γ(ν+n+1)Γ(νn+1)Pνn(z)

A. Erdélyi (1953):  Volume I, §3.3.1, p. 140, eq. (7)

 

EQ_Toroidal01

Qν[tt'(t21)1/2(t'21)1/2cosψ]

=

Qν(t)Pν(t')+2n=1(1)nQνn(t)Pνn(t')cos(nψ)

A. Erdélyi (1953):  Volume I, §3.11, p. 169, eq. (4)

Valid for:    

t,t'  real

       

1<t'<t

       

ν1,2,3,

       

ψ   real

EQ_Toroidal02

Qn1/2m(λ)

=

(1)nπ3/22Γ(nm+1/2)(x21)1/4Pm1/2n(x),

Gil, Segura, & Temme (2000):  eq. (8)

where:    

λx/x21

EQ_Toroidal03

Qνμ(z)

=

eiμπ(2π)12(z21)μ/2Γ(μ+12){0π(zcost)μ12cos[(ν+12)t]dtcos(νπ)0(z+cosht)μ12e(ν+12)tdt}

A. Erdélyi (1953):  Volume I, §3.7, p. 156, eq. (10)

Valid for:    

Reν>12 

    and    

Re(ν+μ+1)>0.

 

EQ_Toroidal04

(νμ+1)Pν+1μ(z)

=

(2ν+1)zPνμ(z)(ν+μ)Pν1μ(z)

Abramowitz & Stegun (1995), p. 334, eq. (8.5.3)

NOTE: Qνμ, as well as Pνμ, satisfies this same recurrence relation.

EQ_Toroidal05

ab[(νσ)(ν+σ+1)+(ρ2μ2)(1z2)1]wνμwσρdz

=

[z(νσ)wνμwσρ+(σ+ρ)wνμwσ1ρ(ν+μ)wν1μwσρ]ab

A. Erdélyi (1953):  Volume I, §3.12, p. 169, eq. (1)

where, wνμ(z) and wσρ(z) denote any solutions of Legendre's differential equation

EQ_Toroidal06

(ξz)m=0n(2m+1)Pm(z)Qm(ξ)

=

1(+1)[P+1(z)Q(ξ)P(z)Q+1(ξ)]

Abramowitz & Stegun (1995), p. 335, eq. (8.9.2)

EQ_Toroidal07

Pνμ+1(z)

=

(z21)12{(νμ)zPνμ(z)(ν+μ)Pν1μ(z)}

Abramowitz & Stegun (1995), p. 333, eq. (8.5.1)

NOTE: Qνμ, as well as Pνμ, satisfies this same recurrence relation.

EQ_Toroidal08

Q12μ(z)+2n=1Qn12μ(z)cos(nν)

=

eiμπ(π2)1/2Γ(μ+12)[(z21)μ/2(zcosν)μ+12]

A. Erdélyi (1953):  Volume I, §3.10, p. 166, eq. (3)

Valid for:    

Reμ>12


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |