AxisymmetricConfigurations/SolutionStrategies

From jetwiki
Jump to navigation Jump to search

Axisymmetric Configurations (Solution Strategies)

Lagrangian versus Eulerian Representation

In our overarching specification of the set of Principle Governing Equations, we have included a,

Lagrangian Representation
of the Euler Equation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi}

[BLRY07], p. 13, Eq. (1.55)

When seeking a solution to the set of governing equations that describes a steady-state equilibrium configuration — as has already been suggested in our accompanying discussion of "other forms of the Euler equation" — it is preferable to start from an,

Eulerian Representation
of the Euler Equation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot \nabla) \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \Phi}


because steady-state configurations are identified by setting the partial time derivative, rather than the total time derivative, to zero. Notice that if the objective is to find an equilibrium configuration in which the fluid velocity is not zero — consider, for example, a configuration that is rotating — then throughout the configuration, the velocity field must be taken into account, in addition to the gradient in the gravitational potential, when determining the pressure distribution. Specifically, for steady-state flows, the required relationship is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{1}{\rho} \nabla P}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- \nabla \Phi - (\vec{v} \cdot \nabla) \vec{v} \, .}

As we also have mentioned elsewhere, by drawing upon a relevant dot product rule vector identity, this expression can be rewritten in terms of the fluid vorticity, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \equiv \nabla\times\vec{v}} , as,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{1}{\rho} \nabla P}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- \nabla \biggl[ \Phi + \frac{1}{2}\vec{v}\cdot \vec{v} \biggr] - \vec\zeta \times \vec{v} \, .}

In certain astrophysically relevant situations — such as the adoption of any one of the simple rotation profiles identified immediately below — the nonlinear velocity term involving the "convective operator" can be rewritten in terms of the gradient of a scalar (centrifugal) potential, that is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\rightarrow}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi \, .}

In such cases, the condition required to obtain a steady-state equilibrium configuration is given by the considerably simpler mathematical relation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{1}{\rho} \nabla P}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- \nabla \biggl[ \Phi + \Psi \biggr] \, .}

In the subsection of this chapter (below) titled, Double Check Vector Identities, we explicitly demonstrate for four separate "simple rotation profiles" that these three separate steady-state balance expressions do indeed generate identical mathematical relations.

Simple Rotation Profile and Centrifugal Potential

Simple
Rotation
Profiles

"… A necessary and sufficient condition for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\varphi}} … to be independent of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is that the surfaces of constant pressure coincide with the surfaces of constant density, i.e., that P be a function of ρ only." In this case, a centrifugal potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi} , can be defined — see the integral expression provided below — and it "is also a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} only … When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi} exists, the equations of state and of energy conservation may be thought of as determining the form of the P-ρ relationship. Hence, by prescribing a P-ρ relationship, one avoids the complications of those further equations. This affects a major simplification of the formal problem of constructing rotating configurations. This procedure will, of course, be inadequate for certain objectives …"

— Drawn from p. 466 of 📚 Lebovitz (1967)

Specifying Radial Rotation Profile in the Equilibrium Configuration

Equilibrium axisymmetric structures — that is, solutions to the above set of simplified governing equations — can be found for specified angular momentum distributions that display a wide range of variations across both of the spatial coordinates, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~z} . According to the Poincaré-Wavre theorem, however, the derived structures will be dynamically unstable toward the development shape-distorting, meridional-plane motions unless the angular velocity is uniform on cylinders, that is, unless the angular velocity is independent of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~z} . (See the detailed discussion by [T78] — or our accompanying, brief summary — of this and other "axisymmetric instabilities to avoid.") With this in mind, we will focus here on a solution strategy that is designed to construct structures with a

Simple Rotation Profile

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi(\varpi,z) = \dot\varphi(\varpi) ,}

which of course means that we will only be examining axisymmetric structures with specific angular momentum distributions of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j(\varpi,z) = j(\varpi) = \varpi^2 \dot\varphi(\varpi)} .

As has been alluded to immeciately above, after adopting a simple rotation profile, it becomes useful to define an effective potential,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_\mathrm{eff} \equiv \Phi + \Psi , }

that is written in terms of a centrifugal potential,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi ~. }

The accompanying table provides analytic expressions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(\varpi)} that correspond to various prescribed functional forms for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi(\varpi)} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(\varpi)} , along with citations to published articles in which equilibrium axisymmetric structures have been constructed using the various tabulated simple rotation profile prescriptions.

 

Simple Rotation Profiles
Found in the Published Literature

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\dot\varphi(\varpi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v_\varphi(\varpi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j(\varpi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j^2}{\varpi^3}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\Psi(\varpi)}

Refs.

Power-law
(any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q \neq 1} )

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-2)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(q-1)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j_0\biggl( \frac{\varpi}{\varpi_0} \biggr)^{q}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{(2q-3)}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2(q-1)} \biggr]}

d, h

Uniform rotation
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(q = 2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi \omega_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi^2 \omega_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi \omega_0^2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- \frac{1}{2} \varpi^2 \omega_0^2}

a, f

Uniform Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_\varphi}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(q = 1)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{v_0}{\varpi}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi v_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{v_0^2}{\varpi}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- v_0^2 \ln\biggl( \frac{\varpi}{\varpi_0} \biggr)}

e

Keplerian
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(q = 1/2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-3/2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi_0 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{-1/2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi_0^2 \omega_K \biggl(\frac{\varpi}{\varpi_0}\biggr)^{1/2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi_0 \omega_K^2 \biggl( \frac{\varpi}{\varpi_0} \biggr)^{-2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~+ \frac{\varpi_0^3 \omega_K^2}{\varpi} }

d

Uniform specific
angular momentum

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(q = 0)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0}{\varpi^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0}{\varpi}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\frac{j_0^2}{\varpi^3}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~+ \frac{1}{2} \biggl[ \frac{j_0^2}{\varpi^2} \biggr]}

c,g

j-constant
rotation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_c \biggl[ \frac{A^2}{A^2 + \varpi^2} \biggr]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_c \biggl[ \frac{A^2 \varpi}{A^2 + \varpi^2} \biggr]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_c \biggl[ \frac{A^2 \varpi^2}{A^2 + \varpi^2} \biggr]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_c^2 \biggl[ \frac{A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~+ \frac{1}{2} \biggl[ \frac{\omega_c^2 A^4}{A^2 + \varpi^2} \biggr]}

a,b,i

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~n'}
Sequences

See discussion below of specific angular momentum distribution, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~h[m(\varpi)]} j,k,ℓ,m

fMaclaurin, C. 1742, A Treatise of Fluxions
j📚 R. Stoeckly (1965, ApJ, Vol. 142, pp. 208 - 228)
k📚 J. P. Ostriker & J. W.-K. Mark (1968, ApJ, Vol. 151, pp. 1075 - 1088)
📚 P. Bodenheimer & J. P. Ostriker (1973, ApJ, Vol. 180, pp. 159 - 170)
i📚 M. J. Clement (1979, ApJ, Vol. 230, pp. 230 - 242)
e📚 C. Hayashi, S. Narita, & S. M. Miyama (1982, Prog. Theor. Phys., Vol. 68, No. 6, pp. 1949 - 1966)
g📚 J. C. B. Papaloizou & J. E. Pringle (1984, MNRAS, Vol. 208, pp. 721 - 750)
a📚 I. Hachisu (1986a, ApJS, Vol. 61, pp. 479 - 507) (especially §II.c)
d📚 J. E. Tohline & I. Hachisu (1990, ApJ, Vol. 361, pp. 394 - 407)
c📚 J. W. Woodward, J. E. Tohline, & I. Hachisu (1994, ApJ, Vol. 420, pp. 247 - 267)
m📚 B. K. Pickett, R. H. Durisen, & G. A. Davis (1996, ApJ, Vol. 458, pp. 714 - 738)
b📚 S. Ou & J. E. Tohline (2006, ApJ, Vol. 651, pp. 1068 - 1078) (especially §2.1)
hThe Hadley & Imamura collaboration (circa 2015)  [Note that, as detailed elsewhere, their definition of the power-law index, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} , is different from ours.]

Note that, while adopting a simple rotation profile is necessary in order to ensure that an axisymmetric, barotropic equilibrium configuration is dynamical stability, it is not a sufficient condition. For example, the Solberg/Rayleigh criterion further demands that, for homentropic systems, the specific angular momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j} , must be an increasing function of the radial coordinate, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi} . It is not surprising, therefore, that the above table of example simple rotation profiles does not include references to published investigations in which the power-law index, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q} , is negative.

"In order to prevent the Rayleigh-Taylor instability … which arises from an adverse distribution of angular momentum — or, more generally, in order to satisfy the Solberg/Rayleigh criterion Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j} must be a monotonically increasing function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~m} . Aside from this restriction, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j(m)} is free to be any well-behaved function which we may plausibly expect to have been estabilshed over the history of the star."

— Drawn from p. 1084 of 📚 Ostriker & Mark (1968)

Prescribing Mass-Dependent Rotation Profile Based on an Initial Spherical Configuration

Each of the simple rotation profiles listed in Table 1 has been defined by specifying the radial distribution of the specific angular momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(\varpi)} , in the rotationally flattened equilibrium configuration. Here we follow the lead of 📚 R. Stoeckly (1965, ApJ, Vol. 142, pp. 208 - 228), of 📚 P. Bodenheimer & J. P. Ostriker (1973, ApJ, Vol. 180, pp. 159 - 170) and of 📚 P. S. Marcus, W. H. Press, & S. A. Teukolsky (1977, ApJ, Vol. 214, pp. 584 - 597) and, instead, present rotation profiles that are defined by specifying the function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j(m_\varpi)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi} is a function describing how the fractional mass enclosed inside Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} varies with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} .

To better clarify what is meant by the function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi} , consider a configuration (not necessarily in equilibrium) that is spherically symmetric and that exhibits an — as yet unspecified — mass-density profile, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(r)} . The mass enclosed within each spherical radius is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_r = \int_0^r 4\pi r^2 \rho( r ) dr \, ,}

and, if the radius of the configuration is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} , then the configuration's total mass is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = \int_0^R 4\pi r^2 \rho( r ) dr \, .}

In contrast, the mass enclosed within each cylindrical radius, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} , is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_\varpi = 2\pi \int_0^\varpi \varpi d\varpi \int_0^{\sqrt{R^2 - \varpi^2}} \rho( r ) 2dz \, ,}

where it is understood that the argument of the density function is, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \sqrt{\varpi^2 + z^2} } .

Example #1: If the configuration has a uniform density, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0} , then its total mass is, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = 4\pi \rho_0 R^3/3} , and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi \rho_0 \int_0^\varpi \varpi [R^2 - \varpi^2]^{1 / 2}d\varpi }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4\pi}{3} \rho_0 \biggl[R^3 - (R^2 - \varpi^2)^{3 / 2} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M - \frac{4\pi}{3} \rho_0 \biggl[(R^2 - \varpi^2)^{3 / 2} \biggr] }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow ~~~m_\varpi \equiv \frac{M_\varpi}{M}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \biggl[1 - \frac{\varpi^2}{R^2}\biggr]^{3 / 2} \, . }

Example #2: If the spherically symmetric configuration has a density profile given by the function,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(r)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0 \biggl[\frac{\sin (\pi r/R)}{\pi r/R} \biggr] \, ,}

then its total mass is, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = 4 \rho_0 R^3/\pi} , and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi \rho_0\int_0^\varpi \varpi d\varpi \int_0^{\sqrt{R^2 - \varpi^2}} \biggl\{ \frac{\sin (\pi \sqrt{\varpi^2 + z^2} /R)}{\pi \sqrt{\varpi^2 + z^2} /R} \biggr\} dz }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 \rho_0 R^3\int_0^\chi \chi d\chi \int_0^{\sqrt{1 - \chi^2}} \biggl\{ \frac{\sin (\pi \sqrt{\chi^2 + \zeta^2} )}{\sqrt{\chi^2 + \zeta^2}} \biggr\} d\zeta }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi \rho_0 \biggl\{ \int_{\sqrt{R^2 - \varpi^2}}^R dz \int_0^\sqrt{R^2-z^2} \biggl[ \frac{\sin (\pi \sqrt{\varpi^2 + z^2} /R)}{\pi \sqrt{\varpi^2 + z^2} /R} \biggr] \varpi d\varpi + \int_0^{\sqrt{R^2 - \varpi^2}} dz \int_0^\varpi \biggl[ \frac{\sin (\pi \sqrt{\varpi^2 + z^2} /R)}{\pi \sqrt{\varpi^2 + z^2} /R} \biggr] \varpi d\varpi \biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 \rho_0 R^3 \biggl\{ \int_{\sqrt{1 - \chi^2}}^1 d\zeta \int_0^\sqrt{1-\zeta^2} \biggl[ \frac{\sin (\pi \sqrt{\chi^2 + \zeta^2})}{ \sqrt{\chi^2 + \zeta^2}} \biggr] \chi d\chi + \int_0^{\sqrt{1 - \chi^2}} d\zeta \int_0^\chi \biggl[ \frac{\sin (\pi \sqrt{\chi^2 + \zeta^2})}{ \sqrt{\chi^2 + \zeta^2}} \biggr] \chi d\chi \biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 \rho_0 R^3 \biggl\{ \int_{\sqrt{1 - \chi^2}}^1 \biggl[ - \frac{ \cos(\pi\sqrt{\zeta^2 + \chi^2})}{\pi} \biggr]_0^\sqrt{1-\zeta^2} d\zeta + \int_0^{\sqrt{1 - \chi^2}} \biggl[ - \frac{ \cos(\pi\sqrt{\zeta^2 + \chi^2})}{\pi} \biggr]_0^\chi d\zeta \biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4 \rho_0 R^3}{\pi} \biggl\{ \int_{\sqrt{1 - \chi^2}}^1 \biggl[ - \cos(\pi) + \cos(\pi\zeta) \biggr] d\zeta + \int_0^{\sqrt{1 - \chi^2}} \biggl[ \cos(\pi\zeta ) - \cos(\pi\sqrt{\zeta^2 + \chi^2}) \biggr] d\zeta \biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4 \rho_0 R^3}{\pi} \biggl\{ \int_{\sqrt{1 - \chi^2}}^1 d\zeta + \int_0^1 \cos(\pi\zeta) d\zeta - \int_0^{\sqrt{1 - \chi^2}} \cos(\pi\sqrt{\zeta^2 + \chi^2}) d\zeta \biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4 \rho_0 R^3}{\pi} \biggl\{ \biggl[ z \biggr]_{\sqrt{1 - \chi^2}}^1 + \frac{1}{\pi} \int_0^\pi \cos(u) du - \int_0^{\sqrt{1 - \chi^2}} \cos(\pi\sqrt{\zeta^2 + \chi^2}) d\zeta \biggr\} }

Uniform-Density Initially (n' = 0)

Drawing directly from §IIc of 📚 Stoeckly (1965), … consider a large, gaseous mass, initially a homogeneous sphere of mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} and angular momentum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} rotating as a solid body, and suppose it contracts in such a way that cylindrical surfaces remain cylindrical and each such surface retains its angular momentum. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_0} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi_0} denote the initial density, radius, and angular velocity of the [initially unstable configuration], Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi_0(\varpi)} the initial radius of the surface now at radius Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_\varpi(\varpi)} the mass inside this surface. The conditions on the contraction are then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M - M_\varpi(\varpi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi \rho_0 \int_{\varpi_0(\varpi)}^{R_0} \biggl[ \biggl(R_0^2 - (\varpi_0^')^2\biggr) \biggr]^{1 / 2} \varpi_0^' d\varpi_0^' \, , }

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi(\varpi) \varpi^2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi_0 [\varpi_0(\varpi)]^2 \, .}

By integrating, eliminating Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi_0(\varpi)} between these equations, and eliminating Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_0} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi_0} in favor of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} , one finds the relation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi(\varpi)} to the mass distribution to be

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi(\varpi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5J}{2M\varpi^2}\biggl\{ 1 - [1 - m(\varpi) ]^{2 / 3} \biggr\} \, , }

📚 Stoeckly (1965), §II.c, eq. (12)

where, the mass fraction,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m(\varpi) \equiv \frac{M_\varpi(\varpi)}{M} \, .}

As noted, this is equation (12) of 📚 Stoeckly (1965); it also appears, for example, as equation (45) in 📚 Ostriker & Mark (1968), as equation (12) in 📚 P. Bodenheimer & J. P. Ostriker (1970, ApJ, Vol. 161, pp. 1101 - 1113), and in the sentence that follows equation (3) in 📚 Bodenheimer & Ostriker (1973). As Stoeckly points out, the angular momentum distribution implied by this functional form of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\dot\varphi} satisfies the Solberg/Rayleigh stability criterion — that is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dj^2}{d\varpi} > 0 }

— initially, and also in the final equilibrium configuration because every cylindrical surface conserves specific angular momentum and the surfaces do not reorder themselves.

We should be able to obtain the identical result by extending Example 1 above. Attaching the subscript "0" to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} in order to acknowledge that, here, the initial configuration is a uniform-density sphere (n' = 0), our derivation gives,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi \equiv \frac{M_\varpi}{M}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \biggl[1 - \frac{\varpi_0^2}{R^2}\biggr]^{3 / 2} \, , }

from which we see that,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\varpi_0^2}{R^2}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \biggl[1 - m_\varpi \biggr]^{2 / 3} \, . }

Now, the total angular momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} , of this initial configuration — a uniformly rotating Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\dot\varphi_0)} , uniform-density sphere — is,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J = I{\dot\varphi}_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{5}MR^2{\dot\varphi}_0 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow ~~~ {\dot\varphi}_0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5J}{2MR^2} \, , }

in which case, the specific angular momentum of each fluid element — which is conserved as the configuration contracts or expands — is given by the expression,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi \varpi^2 = {\dot\varphi}_0 \varpi_0^2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5J}{2MR^2} \cdot \varpi_0^2 }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5J}{2M} \biggl\{ 1 - \biggl[1 - m_\varpi \biggr]^{2 / 3}\biggr\} \, . }

Q.E.D.

Now, just as the fraction of the configuration's mass that lies interior to radial position, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varpi} , is detailed by the function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi} , let's use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell_\varpi} to detail what fraction of the configuration's angular momentum lies interior to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi} . We have,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J \ell_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{m_\varpi} (\dot\varphi \varpi^2) M \cdot dm_\varpi }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow ~~~ \ell_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{5}{2} \int_0^{m_\varpi} \biggl\{ 1 - \biggl[1 - m_\varpi \biggr]^{2 / 3}\biggr\} dm_\varpi }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow ~~~ \frac{2}{5} \cdot \ell_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{m_\varpi} dm_\varpi - \int_0^{m_\varpi} \biggl[1 - m_\varpi \biggr]^{2 / 3}dm_\varpi }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi + \biggl[ \frac{3}{5}\biggl(1 - m_\varpi\biggr)^{5/3} \biggr]_0^{m_\varpi} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_\varpi + \frac{3}{5}\biggl(1 - m_\varpi\biggr)^{5/3} -\frac{3}{5} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\biggl(1 - m_\varpi\biggr) + \frac{3}{5}\biggl(1 - m_\varpi\biggr)^{5/3} + \biggl(1-\frac{3}{5}\biggr) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \ell_\varpi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - \frac{5}{2}\biggl(1 - m_\varpi\biggr) + \frac{3}{2}\biggl(1 - m_\varpi\biggr)^{5/3} \, . }

📚 Marcus, Press, & Teukolsky (1977), §IV.a, eq. (4.3)

Centrally Condensed Initially (n' > 0)

In §III.d (pp. 1084 - 1086) of 📚 Ostriker & Mark (1968), we find the following relations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(m) \equiv \biggl[\frac{M}{J}\biggr] j(m)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1 + a_2(1-m)^{\alpha_2} + a_3(1-m)^{\alpha_3} \, , }

📚 Ostriker & Mark (1968), §III.d, Eq. (50)
📚 Ostriker & Bodenheimer (1968), p. 1090, Eq. (6)
📚 Bodenheimer & Ostriker (1973), §II, Eq. (4)
[T78], §10.4 (p. 254), Eq. (44)
📚 Pickett, Durisen, & Davis (1996), §2.1, Figure 1

where,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\alpha_2} = q_1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2\beta - \alpha \beta(2n+5)}{\alpha \beta(2n+5) - (2n + 3)} \, , }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\alpha_3} = q_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2n+3}{2} \, , }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\alpha (q_2 + 1) - 1}{\alpha (q_2 - q_1)} \, , }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ 1 - \alpha (q_1+1)}{\alpha (q_2 - q_1)} \, , }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1(q_1+1) + b_2(q_2+1) \, , }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -b_1(q_1+1) \, , }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_3}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \equiv}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - b_2(q_2+1) \, . }

Ostriker & Mark claim that the analytical expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\varphi (\varpi) = j[m(\varpi)]/\varpi^2} that was derived by 📚 Stoeckly (1965) for a uniform-density sphere, is retrieved by setting, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n, \alpha, \beta) = (0, \tfrac{2}{5}, \tfrac{3}{2}) \, .} Let's see …

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\lim_{n\rightarrow 0} \biggl[ q_1 \biggr]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\lim_{n\rightarrow 0} \biggl[ \frac{-\tfrac{6n}{5} }{-\tfrac{4n}{5}}\biggr] = + \frac{3}{2} \, ;}

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~q_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ +\frac{3}{2} \, ; }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~b_1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{\tfrac{2}{5} (\tfrac{3}{2} + 1) - 1}{\tfrac{2}{5} (\tfrac{3}{2} - \tfrac{2}{3})} = \frac{0}{\tfrac{1}{3}} =0 \, ; }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~b_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{ 1 - \tfrac{2}{5} (\tfrac{2}{3}+1)}{\tfrac{2}{5} (\tfrac{3}{2} - \tfrac{2}{3})} = \frac{ \tfrac{1}{3}}{\tfrac{1}{3} } = 1 \, ; }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_1}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \tfrac{5}{2} \, ; }

     

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ 0 \, ; }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_3}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ - \tfrac{5}{2} \, . }

This implies,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~h(m)\biggr|_{n' = ~0} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{5}{2}\biggl[1 - (1-m)^{2/3} \biggr] \, . }

Q. E. D.

In addition, from p. 163 (Table 1) of 📚 Bodenheimer & Ostriker (1973) we find the following table of coefficient values.

Coefficients for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~h(m)} Expression
[from K. Braly's (1969) unpublished undergraduate thesis, Princeton University]

Figure & caption extracted from p. 715 of
B. K. Pickett, R. H. Durisen, & G. A. Davis (1996)
The Dynamic Stability of Rotating Protostars and Protostellar Disks.
I. The Effects of the Angular Momentum Distribution

The Astrophysical Journal, Vol. 458, pp. 714 - 738
© American Astronomical Society

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~n^'} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~a_3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\alpha_2 = \frac{1}{q_1}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\alpha_3 = \frac{1}{q_2}} File:PickettDurisenDavis96Fig1.png
0 +2.5 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\cdots} -2.5 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\cdots} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{2}{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{1}{2}} +3.068133 +0.203667 -3.271800 +0.801297 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{1}{2}}
1 +3.825819 +0.857311 -4.68313 +0.650981 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{2}{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{3}{2}} +4.887588 +2.345310 -7.232898 +0.525816 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{1}{3}}
2 +6.457897 +6.018111 -12.476007 +0.417472 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{2}{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{5}{2}} +8.944150 +18.234305 -27.178455 +0.321459 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{1}{4}}
3 +13.270061 +163.26149 -176.53154 +0.235287 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{2}{9}}

Coefficients for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~h(m)} Expression
used by 📚 Ostriker & Bodenheimer (1968), p. 1090, Eq. (6)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{3}{2}} +4.8239 +1.8744 -6.6983 +0.5622 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\tfrac{1}{3}}

Double Check Vector Identities

Let's plug a few different simple rotation profiles into the Euler equation, using a cylindrical-coordinate base to demonstrate that the three expressions are identical, namely, that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \times \vec{v} + \frac{1}{2}\nabla (v^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi \, .}

Uniform Rotation

In the case of uniform rotation, we have,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec{v} = \hat{e}_\varphi (v_\varphi) = \hat{e}_\varphi (\varpi \omega_0) ~~~\Rightarrow~~~ \frac{j^2}{\varpi^3} = \frac{(\varpi v_\varphi)^2}{\varpi^3} = \frac{(\varpi^2\omega_0)^2}{\varpi^3} = \varpi \omega_0^2\, ,}

where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_0} is independent of radial position. This also means that,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi = - \frac{1}{2} \varpi^2 \omega_0^2~; }

and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta = \nabla \times \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ -\cancel{ \frac{\partial v_\varphi}{\partial z} }\biggr] + \hat{e}_z \biggl[ \frac{1}{\varpi} \frac{\partial (\varpi v_\varphi)}{\partial \varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z \biggl[ \frac{1}{\varpi} \frac{\partial (\varpi^2 \omega_0 )}{\partial \varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z ( 2\omega_0 ) }

[A]   Hence,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[ - \frac{v_\varphi \cdot v_\varphi}{\varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[ - \frac{(\varpi \omega_0)\cdot (\varpi \omega_0)}{\varpi} \biggr] = - \hat{e}_\varpi (\varpi \omega_0^2) \, .}

[B]   Alternatively,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \times \vec{v} + \frac{1}{2}\nabla (v^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_z ( 2\omega_0 ) \times \hat{e}_\varphi (\varpi \omega_0) + \hat{e}_\varpi \frac{1}{2} \biggl[ \frac{\partial}{\partial\varpi} (\varpi^2 \omega_0^2) \biggr]}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl\{ -( 2\omega_0 ) (\varpi \omega_0) + (\varpi \omega_0^2) \biggr\} = - \hat{e}_\varpi (\varpi \omega_0^2) \, .}

[C]   Or,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[- \frac{1}{2} \frac{\partial}{\partial\varpi} (\varpi^2 \omega_0^2) \biggr] = - \hat{e}_\varpi (\varpi \omega_0^2) \, .}

This demonstrates that, in the case of uniform angular velocity, all three expressions are identical.

Power Law

In the case of a power-law expression, we have,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec{v} = \hat{e}_\varphi (v_\varphi) = \hat{e}_\varphi \biggl[ \frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(q-1)} \biggr] ~~~\Rightarrow~~~ \frac{j^2}{\varpi^3} = \biggl[ \frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(2q-3)} \biggr] \, ,}

where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~j_0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\varpi_0} are both independent of radial position. This also means that,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi = - \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{2(q-1)} \biggr]~; }

and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta = \nabla \times \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ -\cancel{ \frac{\partial v_\varphi}{\partial z} }\biggr] + \hat{e}_z \biggl[ \frac{1}{\varpi} \frac{\partial (\varpi v_\varphi)}{\partial \varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z~ \frac{1}{\varpi} \frac{\partial }{\partial \varpi} \biggl[ \frac{j_0}{\varpi_0} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{q} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z~ \frac{q}{\varpi} \biggl[ \frac{j_0}{\varpi_0^{q+1}} ( \varpi)^{q-1} \biggr] = \hat{e}_z~ q \biggl[ \frac{j_0}{\varpi_0^{3}} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{q-2} \biggr]\, . }

[D]   Hence,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[ - \frac{v_\varphi \cdot v_\varphi}{\varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ - \hat{e}_\varpi \frac{1}{\varpi} \biggl[ \frac{j_0^2}{\varpi_0^4} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{2(q-1)} \biggr] = - \hat{e}_\varpi \biggl[ \frac{j_0^2}{\varpi_0^5} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(2q-3)} \biggr]\, .}

[E]   Alternatively,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \times \vec{v} + \frac{1}{2}\nabla (v^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_z~ q \biggl[ \frac{j_0}{\varpi_0^{3}} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{q-2} \biggr] \times \hat{e}_\varphi \biggl[ \frac{j_0}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(q-1)} \biggr] + \hat{e}_\varpi \frac{1}{2} \frac{\partial}{\partial\varpi} \biggl[ \frac{j_0^2}{\varpi_0^4} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(2q-2)} \biggr]}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~-\hat{e}_\varpi~ q \biggl[ \frac{j_0^2}{\varpi_0^{5}} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2q-3} \biggr] + \hat{e}_\varpi(q-1) \biggl[ \frac{j_0^2}{\varpi_0^5} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{(2q-3)} \biggr]}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~-\hat{e}_\varpi~ \biggl[ \frac{j_0^2}{\varpi_0^{5}} \biggl( \frac{\varpi}{\varpi_0} \biggr)^{2q-3} \biggr] \, . }

[F]   Or,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi\frac{\partial}{\partial\varpi} \biggl\{- \frac{1}{2(q-1)} \biggl[ \frac{j_0^2}{\varpi_0^2} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{2(q-1)} \biggr] \biggr\}}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~- ~\hat{e}_\varpi\frac{\partial}{\partial\varpi} \biggl[ \frac{j_0^2}{\varpi_0^3} \biggl( \frac{\varpi}{\varpi_0}\biggr)^{2q-3} \biggr] }

This demonstrates that, in the case of power-law angular velocity profile, all three expressions are identical.

Uniform vφ

In the case of a uniform Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v_\varphi} (i.e., a flat rotation curve), we have,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec{v} = \hat{e}_\varphi (v_\varphi) = \hat{e}_\varphi v_0 ~~~\Rightarrow~~~ \frac{j^2}{\varpi^3} = \frac{v_0^2}{\varpi} \, ,}

where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v_0} is independent of radial position. This also means that,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi = - v_0^2 \ln \biggl( \frac{\varpi}{\varpi_0} \biggr)~; }

and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta = \nabla \times \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ -\cancel{ \frac{\partial v_\varphi}{\partial z} }\biggr] + \hat{e}_z \biggl[ \frac{1}{\varpi} \frac{\partial (\varpi v_\varphi)}{\partial \varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z \biggl( \frac{v_0}{\varpi} \biggr) \, . }

[G]   Hence,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[ - \frac{v_\varphi \cdot v_\varphi}{\varpi} \biggr] = -~\hat{e}_\varpi \biggl[ \frac{v_0^2}{\varpi} \biggr] \, .}

[H]   Alternatively,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \times \vec{v} + \frac{1}{2}\nabla (v^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z \biggl( \frac{v_0}{\varpi} \biggr) \times \hat{e}_\varphi v_0 + \hat{e}_\varpi~ \frac{1}{2} \frac{\partial}{\partial \varpi} (v_0^2) }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ -~\hat{e}_\varpi \biggl( \frac{v_0^2}{\varpi} \biggr) \, . }

[I]   Or,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi\frac{\partial}{\partial\varpi} \biggl\{- v_0^2 \ln \biggl( \frac{\varpi}{\varpi_0} \biggr)\biggr\}}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~-~ \hat{e}_\varpi v_0^2 \biggl(\frac{\varpi}{\varpi_0} \biggr)^{-1} \frac{1}{\varpi_0}}

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~-~ \hat{e}_\varpi \biggl( \frac{v_0^2}{\varpi} \biggr) \, .}

This demonstrates that, in the case of a constant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~v_\varphi} profile, all three expressions are identical.

j-Constant Rotation

In the case of so-called j-constant rotation, we have,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec{v} = \hat{e}_\varphi (v_\varphi) = \hat{e}_\varphi ~\omega_c \biggl[ \frac{A^2\varpi}{A^2 + \varpi^2}\biggr] ~~~\Rightarrow~~~ \frac{j^2}{\varpi^3} = \frac{(\varpi v_\varphi)^2}{\varpi^3} = \frac{\omega_c^2}{\varpi} \biggl[ \frac{A^2\varpi}{A^2 + \varpi^2}\biggr]^2 = \biggl[ \frac{\omega_c^2 A^4\varpi}{(A^2 + \varpi^2)^2}\biggr] \, , }

where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\omega_c} , and the characteristic length, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~A} , are both independent of radial position. This also means that,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi \equiv - \int \frac{j^2(\varpi)}{\varpi^3} d\varpi = +\frac{1}{2}\biggl[ \frac{\omega_c^2 A^4}{(A^2 + \varpi^2)}\biggr]~; }

and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta = \nabla \times \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ -\cancel{ \frac{\partial v_\varphi}{\partial z} }\biggr] + \hat{e}_z \biggl[ \frac{1}{\varpi} \frac{\partial (\varpi v_\varphi)}{\partial \varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z \biggl\{ \frac{\omega_c}{\varpi} \frac{\partial }{\partial \varpi} \biggl[ \frac{A^2\varpi^2}{A^2 + \varpi^2}\biggr]\biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z~ \frac{\omega_c}{\varpi} \biggl\{ \biggl[ 2A^2\varpi(A^2 + \varpi^2)^{-1} \biggr] - \biggl[ 2A^2\varpi^3(A^2 + \varpi^2)^{-2} \biggr]\biggr\} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z~ \biggl[2\omega_c A^4 (A^2 + \varpi^2)^{-2} \biggr] \, . }

[J]   Hence,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~(\vec{v} \cdot \nabla) \vec{v}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi \biggl[ - \frac{v_\varphi \cdot v_\varphi}{\varpi} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ -~\hat{e}_\varpi \frac{\omega_c^2}{\varpi} \biggl[ \frac{A^2\varpi}{A^2 + \varpi^2}\biggr]^2 = -~\hat{e}_\varpi \biggl[ \frac{\omega_c^2A^4 \varpi}{(A^2 + \varpi^2)^2} \biggr] \, . }

[K]   Alternatively,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\vec\zeta \times \vec{v} + \frac{1}{2}\nabla (v^2)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_z~ \biggl[2\omega_c A^4 (A^2 + \varpi^2)^{-2} \biggr] \times \hat{e}_\varphi ~\omega_c \biggl[ \frac{A^2\varpi}{A^2 + \varpi^2}\biggr] + \frac{1}{2} \hat{e}_\varpi \frac{\partial}{\partial \varpi}\biggl[ \omega_c^2 A^4\varpi^2 (A^2 + \varpi^2)^{-2}\biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ - \hat{e}_\varpi ~ \biggl[ \frac{2\omega_c^2 A^6 \varpi }{(A^2 + \varpi^2)^{3}} \biggr] + \hat{e}_\varpi \biggl[ \omega_c^2 A^4\varpi (A^2 + \varpi^2)^{-2} - 2 \omega_c^2 A^4\varpi^3 (A^2 + \varpi^2)^{-3}\biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ \frac{ \omega_c^2 A^4\varpi }{ (A^2 + \varpi^2)^{2}} - \frac{2 \omega_c^2 A^4\varpi^3}{ (A^2 + \varpi^2)^{3} } - \frac{2\omega_c^2 A^6 \varpi }{(A^2 + \varpi^2)^{3}} \biggr] }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \hat{e}_\varpi \biggl[ (A^2 + \varpi^2) - 2 \varpi^2 - 2A^2 \biggr] \frac{ \omega_c^2 A^4\varpi }{ (A^2 + \varpi^2)^{3}} }

 

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ -~ \hat{e}_\varpi \biggl[ \frac{ \omega_c^2 A^4\varpi }{ (A^2 + \varpi^2)^{2}} \biggr] \, . }

[L]   Or,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\nabla \Psi}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~=}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\hat{e}_\varpi ~ \frac{1}{2} \frac{\partial}{\partial \varpi}\biggl[ \omega_c^2 A^4 (A^2 + \varpi^2)^{-1} \biggr] = - \hat{e}_\varpi \biggl[ \frac{ \omega_c^2 A^4 \varpi }{ (A^2 + \varpi^2)^{2}} \biggr] \, .}

This demonstrates that, in the case of a j-constant rotation profile, all three expressions are identical.

Technique

To solve the above-specified set of simplified governing equations we will essentially adopt Technique 3 as presented in our construction of spherically symmetric configurations. Using a barotropic equation of state — in which case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~dP/\rho} can be replaced by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~dH} — we can combine the two components of the Euler equation shown above back into a single vector equation of the form,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla \biggl[ H + \Phi_\mathrm{eff} \biggr] = 0 , }

where it is understood that here, as displayed earlier, the gradient represents a two-dimensional operator written in cylindrical coordinates that is appropriate for axisymmetric configurations, namely,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla f = {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] \, . }

This means that, throughout our configuration, the functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} ) and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~\Phi_\mathrm{eff}} (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} ) must sum to a constant value, call it Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~C_\mathrm{B}} . That is to say, the statement of hydrostatic balance for axisymmetric configurations reduces to the algebraic expression,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~H + \Phi_\mathrm{eff} = C_\mathrm{B}} .

This relation must be solved in conjunction with the Poisson equation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~ \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho , }

giving us two equations (one algebraic and the other a two-dimensional Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^\mathrm{nd}} -order elliptic PDE) that relate the three unknown functions, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} .

See Also


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |