SSC/Structure/BonnorEbert

From jetwiki
Jump to navigation Jump to search

Pressure-Bounded Isothermal Sphere

Bonnor-Ebert
(Isothermal)
Spheres

(1955-56)

As has been derived and discussed elsewhere, an isolated isothermal sphere has a density profile that extends to infinity and, correspondingly, an unbounded total mass. In an astrophysical context, neither of these properties is desirable. A more realistic isothermal configuration can be constructed by embedding the structure in a low density, but hot external medium whose pressure, Pe, confines the isothermal configuration to a finite size. In a mathematical model, this can be accomplished by ripping off an outer layer of the isolated isothermal configuration down to the radius — label it ξe — at which the configuration's original (internal) pressure equals Pe; the interior of the configuration that remains — containing mass Mξe — should be unaltered and in equilibrium. (This will work only for spherically symmetric configurations, as the gravitational acceleration at any location only depends on the mass contained inside that radius.) Ebert (1955) and Bonnor (1956) are credited with constructing the first such models and, most significantly, discovering that, for any specified sound speed and applied external pressure, there is a mass above which no equilibrium configuration exists. We present, here, the salient elements of these (essentially equivalent) derivations.

Prior to studying this discussion of pressure-bounded isothermal spheres, we recommend studying our related discussion of pressure-bounded n = 5 polytropes. As with isolated isothermal spheres, isolated n = 5 polytropes extend to infinity. But, unlike their isothermal counterparts, the structure of n = 5 polytropes is describable analytically. Hence, an analysis of their structure and its extension to pressure-bounded configurations avoids the clutter introduced by a model — such as the isothermal sphere — that can only be described numerically. As it turns out, the pressure-bounded n = 5 polytrope exhibits a Bonnor-Ebert type limiting mass that is analytically prescribable. Its derivation is mathematically quite clean and provides a firm foundation for understanding the better known — but only numerically prescribable — Bonnor-Ebert limiting mass.

Governing Relation

The equilibrium structure of an isolated isothermal sphere, as derived by Emden (1907), has been discussed elsewhere. From this separate discussion we appreciate that the governing ODE is,

1r2ddr(r2dlnρdr)=4πGcs2ρ,

where,

cs2=Tμ¯=kTmuμ¯,

is the square of the isothermal sound speed. In their studies of pressure-bounded isothermal spheres, Ebert (1955, ZA, 37, 217) and Bonnor (1956, MNRAS, 116, 351) both started with this governing ODE, but developed its solution in different ways. Here we present both developments while highlighting transformations between the two.


Derivation by Bonnor (1956) (edited) translation Derivation by Ebert (1955) (edited)

1r2ddr(r2ρdρdr)=4πGmρkT.

(2.3)

Let us now transform (2.3) by making the following substitutions:

ρ=λeψ,   r=β1/2λ1/2ξ,

(2.6)

where λ is an arbitrary constant [we choose λ=ρc], and

β=kT4πGm.

(2.7)

Then (2.3) becomes

ξ2ddξ(ξ2dψdξ)=eψ.

(2.8)
Gγ

0=(T04πμγρ0)1/2.

(4)

Wir setzen unter Verwendung von (4) r=0ξ und ρ=ρ0η mit ρ0=ρ(0). Für η ergibt sich die Differential-gleichung der isothermen Gaskugel:

η'(η')2η+2η'ξ+η2=0.

(17)

Der Strich bezeichnet die Differentiation nach ξ.

ρcρ0
kTmcs2T0μ
β1/2λ1/2l0
eψη

Both of these dimensionless governing ODEs — Bonnor's Eq. (2.8) and Ebert's Eq. (17) — are identical to the dimensionless expression derived by Emden (see the presentation elsewhere), namely,

d2v1d𝔯12+2𝔯1dv1d𝔯1+ev1=0.

The translation from Emden-to-Bonnor-to-Ebert is straightforward:

𝔯1=ξ|Bonner=ξ|Ebertandev1=eψ=η.

In much of what follows, we will use Bonnor's (ξ,ψ) notation rather than Emden's (𝔯1,v1) notation. This means that we will be referring to the isothermal Lane-Emden function, ψ(ξ), which provides a solution to the governing,

Isothermal Lane-Emden Equation

1ξ2ddξ(ξ2dψdξ)=eψ

P-V Diagram

Given a value for the isothermal sound speed, cs, and the central density, ρc, our accompanying summary of the properties of an isothermal sphere, as derived by Emden (1907), provides the following structural relations:

  • Radial Coordinate Position & Associated Volume:

r=(cs24πGρc)1/2ξ ;

V4π3r3=4π3(cs24πGρc)3/2ξ3 ;

  • Pressure Profile:

P=(cs2ρc)eψ;

  • Enclosed Mass:

Mr=(cs64πG3ρc)1/2[ξ2dψdξ].

Bonnor and Ebert both asked how the surface pressure of a truncated isothermal sphere of a given sound speed — or, equivalently, how the external pressure, Pe, required to confine that truncated configuration — will vary with volume if the mass Mξe of the configuration, rather than the central density, is held fixed. The above expression for the enclosed mass can be inverted to give ρc in terms of Mξe; specifically,

ρc=(cs64πG3Mξe2)[ξ2(dψdξ)]e2,

where the subscript e denotes a truncated configuration of radius ξe confined by an external pressure. This allows us to replace ρc in favor of Mξe in the expressions for both the pressure and volume, obtaining,

  • Pressure:

Pe=(cs84πG3Mξe2)ξe4(dψdξ)e2eψe,

or, adopting Ebert's (1955) normalization pressure, P0cs8/(4πG3Mξe2) — see his equation (22),

PeP0=ξe4(dψdξ)e2eψe;

  • Volume:

V2=(4π3)2(cs24πG)3(4πG3Mξe2cs6)3[ξ2(dψdξ)]e6ξe6=(4π3)2(G6Mξe6cs12)[ξ2(dψdξ)]e6ξe6,

V=4π3(GMξecs2)3[ξ(dψdξ)]e3;

or, adopting a normalization volume, V0(4π/3)R03, defined in terms of Ebert's (1955) normalization radius, R0GMξe/cs2 — again, see his equation (22),

VV0=[ξ(dψdξ)]e3;

the corresponding normalized radius of the truncated configuration is,

RR0=(VV0)1/3=[ξ(dψdξ)]e1.

The expressions shown here for Pe and V are identical to those presented by Bonnor (1956) for "p" and "V," immediately following his equation (2.17). They are also the set of parametric equations that lead to Bonnor's Fig. 1 P-V diagram, which is reproduced here as the left-hand panel of our Figure 1 (with permission, as our caption to this figure documents).

Figure 1: Bonnor's P-V Diagram

Bonnor (1956, MNRAS, 116, 351)
Bonnor (1956, MNRAS, 116, 351)
P-V Diagram Using Emden's (1907) data
P-V Diagram Using Emden's (1907) data

Pertaining to Reprinted Figure (immediately above)

Author (year):W. B. Bonnor (1956)
Article Title.:Boyle's Law and Gravitational Instability
Journal Title:Monthly Notices of the Royal Astronomical Society
Volume & Pages:116, pp. 351 - 359
Figure No.:1 (p. 355)
Copyright:Royal Astronomical Society
 Permission to reuse this figure has been granted implicitly as summarized here and as detailed by the publisher here.
Pertaining to Our Original Figure (immediately above)

Caption: In an effort to demonstrate more explicitly how Bonnor's 1956 work ties back to the original work on isolated isothermal spheres that was published by Emden in 1907, the blue curve in the above panel displays a plot of Pe/P0 versus V/V0 that we have constructed using data drawn directly from Table 14 of Emden (1907).

Ebert chose to illustrate the behavior of the sequence of pressure-bounded isothermal spheres by plotting log(P/P0) versus log(R/R0), rather than P versus V. The result — Figure 2 in Ebert (1955) — is reproduced here as the left-hand panel of our Figure 2. It should be clear that the information contained in Ebert's plot is identical to the information contained in the curve that is displayed in Bonner's P-V diagram.

Figure 2: Ebert's P-R Diagrams

Ebert (1955) Figure 2
Ebert (1955) Figure 2

The reader may readily view this referenced image/text by opening (preferably in a separate browser window) the relevant article and scrolling to the relevant figure/page, as detailed immediately below.
P-R Diagram Using Emden's (1907) data
P-R Diagram Using Emden's (1907) data

Pertaining to Reprinted Figure (immediately above)

Author (year):R. Ebert (1955)
Article Title.:Über die Verdichtung von HI-Gebieten
Journal Title:Zeitschrift für Astrophysik
Volume & Pages:37, pp. 217 - 232
Figure No.:2 (p. 222)
Copyright:Springer-Verlag
 Required reuse permissions summarized here and detailed by the publisher here.
Pertaining to Our Original Figure (immediately above)

Caption: In an effort to demonstrate more explicitly how Ebert's 1955 work ties back to the original work on isolated isothermal spheres that was published by Emden in 1907, the blue curve in the above panel displays a plot of log(Pe/P0) versus log(R/R0) that we have constructed using data drawn directly from Table 14 of Emden (1907).


In an effort to demonstrate more explicitly how Bonnor's 1956 work and Ebert's 1955 work tie back to the original work on isolated isothermal spheres that was published by Emden in 1907, the right-hand panel of our Figure 1 shows a plot of Pe/P0 versus V/V0, and the right-hand panel of our Figure 2 shows a plot of log(Pe/P0) versus log(R/R0) that we have constructed using data drawn directly from Table 14 of Emden (1907).


Whitworth's Normalization

Whitworth (1981, MNRAS, 195, 967) examined the behavior of model sequences that result from embedding polytropes with various effective adiabatic indexes (γg=1/3,2/3,1,4/3,5/3) in an external medium of pressure Pe. Following Ebert's lead, in his Figure 1b, Whitworth showed how the size of the configuration varies with Pe along each sequence. A reproduction of Whitworth's Figure 1b has been displayed in our separate discussion of pressure-bounded polytropic configurations that have analytic prescriptions, but we have again displayed the figure here, in the right-most panel of our Figure 2, because Whitworth included pressure-bounded isothermal configurations (γg=1) among his models. The red arrow identifies the isothermal sequence. Whitworth's Figure 1b effectively serves as an extension of Ebert's Figure 2, shown above in the left-most panel of our Figure 2. In order to assist comparison with Ebert's figure, this time we have rotated and flipped Whitworth's figure relative to its original orientation because Whitworth chose to plot R versus Pe whereas Ebert plotted Pe versus R.

Figure 3: Whitworth's P-R Diagrams

Whitworth (1981) Figure 1b
Whitworth (1981) Figure 1b

Pertaining to Reprinted Figure
(both on the top-left and on the right)

Author (year):A. Whitworth (1981)
Article Title.:Global Gravitational Stability for One-Dimensional Polytropes
Journal Title:Monthly Notices of the Royal Astronomical Society
Volume & Pages:195, pp. 967 - 977
Figure No.:1b (p. 971)
Copyright:Royal Astronomical Society
 Permission to reuse this figure has been granted implicitly as summarized here and as detailed by the publisher here.

 

 


Pertaining to Reprinted Figure (on the right)

Same as reprinted figure on the top-left, except image has been flipped, both vertically and horizontally, so that the axes correspond with the axes of the diagrams presented above in our Figure 2a; a red arrow (our modification) points to the most relevant (isothermal) equilibrium sequence.


Pertaining to Our Original Figure (on the bottom-left)

Caption: In an effort to demonstrate more explicitly how Whitworth's 1981 work ties back to the original work on isolated isothermal spheres that was published by Emden in 1907, the blue curve displays a plot of Pe/Prf versus V/Vrf that we have constructed using data drawn directly from Table 14 of Emden (1907).

Whitworth (1981) Figure 1b
Whitworth (1981) Figure 1b
P-R Diagram Using Emden's (1907) data
P-R Diagram Using Emden's (1907) data


It should be noted that the scaling adopted along both axes in Whitworth's Figure 1b is different from the scaling used by Ebert. As is detailed in the accompanying ASIDE, Whitworth "referenced" Pe and R to, respectively,

Prf=(345328)P0,

Rrf=(2235)R0.

In generating the right-hand panel of our Figure 1, we have adopted Whitworth's scaling. That is to say, we have plotted Pe/Prf versus V/Vrf, where,

PePrf

=

PeP0P0Prf=(283453)ξe4(dψdξ)e2eψe,

and,

VVrf

=

VV0(R0Rrf)3=(3522)3[ξ(dψdξ)]e3.

Limiting Pressure and Maximum Mass

No matter how you look at the bounded isothermal sphere sequence — whether plotted as a curve in Bonnor's P-V diagram or as a curve in Whitworth's R-P diagram — it is clear that, for a given choice of the sound speed and the mass, there is a value of the pressure above which no equilibrium configuration exists. (Alternatively, for a given sound speed and external pressure, there is a limiting mass above which no equilibrium configuration exists; see below.) The configuration identifying this limiting pressure resides at the position along Bonnor's P-V diagram sequence where dPe/dV — or, in Whitworth's discussion, dPe/dR — first goes to zero.

Following Bonnor's Presentation

As is shown in his equation (3.1), Bonnor (1956) determined that, at a fixed mass and sound speed, dP/dV goes to zero when,

112eψ(dψdξ)2=0.

In the following figure, the function defined by the left-hand-side of this expression is plotted versus lnξ using Emden's (1907) tabulated data. As Bonnor noted, the function first crosses zero when ξ6.5 (lnξ=1.87).

Bonnor (1956, MNRAS, 116, 351)
Bonnor (1956, MNRAS, 116, 351)

An isothermal sphere that is truncated at this location will have a radius,

R=(cs2Gρc)1/26.54π=1.83(cs2Gρc)1/2,

which matches equation (3.3) of Bonnor (1956); and, drawing on function values provided in Emden's (1907) Table 14, it will have a total mass,

MR=(cs64πG3ρc)1/2[ξ2dψdξ]e(cs6G3ρc)1/2[(14.353+17.214)/24π]=4.45(cs6G3ρc)1/2.

Dividing this expression for MR by the expression for R gives,

MRR=2.43(cs2G),

which matches equation (3.6) of Bonnor (1956). In order to maintain an equilibrium structure while truncating the isothermal model at this radius requires applying an external pressure of the following magnitude:

Pe=cs2ρceψcs2ρc(0.08493+0.05833)/2=0.0716cs2ρc,

where, again, numerical values have been drawn from Emden's (1907) Table 14.

Finally, using this relation to eliminate ρc from the expression for MR gives,

MR

=

(cs8G3Pe)1/2[14π]1/2[ξ2eψ/2(dψdξ)]e

 

(cs8G3Pe)1/212π1/2{12[14.353(0.08493)1/2+17.214(0.05833)1/2]}

 

1.18(cs8G3Pe)1/2.

This is the mass upper limit for a stable, pressure-bounded isothermal sphere — the so-called Bonnor-Ebert mass; see, for example, equation (1) of Shu (1977). In a separate discussion, we compare this result to the determinations of other related mass upper-limits.

Ebert's Corresponding Presentation

The expression derived by Bonnor for the ratio MR/R in the limiting configuration can be inverted to give,

R0.41(GMRcs2).

This matches the expression for the critical radius, Rkr, that appears as equation (23) in Ebert's (1955) published derivation. Similarly, the above relation that expresses the Bonnor-Ebert limiting mass in terms of cs, G, and Pe can be inverted to give,

Pe4π(1.18)2(cs84πG3MR2)=17.5(cs84πG3MR2),

which agrees with the limiting pressure that was derived by Ebert (1955) and that is also presented in his equation (23).

Mass versus Radius Equilibrium Sequence

Old Derivation

For use in a related discussion, let's examine how the mass varies with radius — at fixed cs2 and fixed Pe — in the limit as ξe0. From above, we have,

1ξ2ddξ[ξ2ψ']

=

eψ

ψ'

=

eψ2ξψ',

and,

Pe

=

(cs2ρc)eψ

ρc

=

(cs2Pe)eψ

Hence,

M

=

(cs64πG3ρc)1/2[ξ2dψdξ]

 

=

(cs44πG3Pe)1/2[ξ2ψ']eψ/2

dMdξ

=

(cs44πG3Pe)1/2[2ξψ'+ψ'+12(ψ')2]ξ2eψ/2

 

=

(cs44πG3Pe)1/2[eψ+12(ψ')2]ξ2eψ/2

Also,

R

=

(cs24πGρc)1/2ξ

 

=

(14πGPe)1/2ξeψ/2

dRdξ

=

(14πGPe)1/2[1+ξ2ψ']eψ/2

So the derivative of interest is,

dMdR=dM/dξdR/dξ

=

(cs44πG3Pe)1/2[eψ+12(ψ')2]ξ2eψ/2{(14πGPe)1/2[1+ξ2ψ']eψ/2}1

 

=

(cs2G)[2eψ+(ψ')2]ξ2[2+ξψ']1

dlnMdlnR

=

ξeψ/2[ξ2ψ'eψ/2]1[2eψ+(ψ')2]ξ2[2+ξψ']1

 

=

ξ[ψ']1[2eψ+(ψ')2][2+ξψ']1

 

=

ξ[2eψ+(ψ')2]ψ'[2+ξψ']

Now, we can also write,

ψ'

=

(Mm0)ξ2eψ/2

and,

eψ

=

(Rr0)ξ2

Hence,

dlnMdlnR

=

ξ[2eψ+(Mm0)2ξ4eψ][2(Mm0)ξ2eψ/2+ξ(Mm0)2ξ4eψ]1

 

=

[2ξ4+(Mm0)2][2(Mm0)(Rr0)1/2+(Mm0)2]1

New Derivation

For use in a related discussion, let's examine how the mass, MR, varies with radius, R, at fixed cs2 and Pe. From above, we have,

1ξ2ddξ[ξ2ψ']

=

eψ

ψ'

=

eψ2ξψ',

and,

R2=(cs24πGρc)ξe2 ;

MR2=(cs64πG3ρc)[ξ2dψdξ]e2.

Given that, Pe=(cs2ρc)eψe, we can also write,

R

=

(cs44πGPe)1/2ξeeψe/2,

MR

=

(cs84πG3Pe)1/2[ξ2ψ']eeψe/2.


Hence,

dMRdξe

=

(cs84πG3Pe)1/2[2ξψ'+ξ2ψ'12ξ2(ψ')2]eeψe/2

 

=

(cs84πG3Pe)1/2[2ξψ'+ξ2(eψe2ξeψe')12ξ2(ψ')2]eeψe/2

 

=

(cs84πG3Pe)1/2[eψe12(ψ')2]eξe2eψe/2.

Also,

dRdξe

=

(cs44πGPe)1/2[112ξeψe']eψe/2.

So the derivative of interest is,

dMdR=dM/dξedR/dξe

=

(cs84πG3Pe)1/2[eψe12(ψ')2]eξe2eψe/2{(cs44πGPe)1/2[112ξeψe']eψe/2}1

 

=

(cs4G2)1/2[eψe12(ψ')2]eξe2[112ξeψe']1

dlnMdlnR

=

ξeψ'[eψe12(ψ')2]e[112ξeψe']1

 

=

ξeψ'eψe[2(ψ')2eψe]e[2ξeψe']1.


Now, we can also write,

ψ'

=

(Mm0)ξ2eψ/2

and,

eψ

=

(Rr0)ξ2

Hence,

dlnMdlnR

=

ξ[2eψ+(Mm0)2ξ4eψ][2(Mm0)ξ2eψ/2+ξ(Mm0)2ξ4eψ]1

 

=

[2ξ4+(Mm0)2][2(Mm0)(Rr0)1/2+(Mm0)2]1

Related Discussions

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |