# Description of Riemann Type I Ellipsoids

A more succinct version of this chapter is titled, 3Dconfigurations/DescriptionOfRiemannTypeI.

## Analytic Determination of Equilibrium Model Parameters

Drawing heavily from §47 (pp. 129 - 132) of [EFE] , in a separate chapter we show how the steady-state 2nd-order tensor virial equations can be used to derive the equilibrium structure of Riemann Ellipsoids of Type I, II, & III. By definition, for these types of Riemann Ellipsoids, the two vectors ${\displaystyle {\vec {\Omega }}}$ and ${\displaystyle ~{\vec {\zeta }}}$ are not parallel to any of the principal axes of the ellipsoid, and they are not aligned with each other, but they both lie in the ${\displaystyle y-z}$ plane — that is to say, ${\displaystyle ~(\Omega _{1},\zeta _{1})=(0,0)}$. For a given specified density ${\displaystyle (\rho )}$ and choice of the three semi-axes ${\displaystyle (a_{1},a_{2},a_{3})\leftrightarrow (a,b,c)}$, all five of the expressions displayed in that chapter's Summary Table must be used in order to determine the equilibrium configuration's associated values of the five unknowns: ${\displaystyle \Pi ,(\Omega _{2},\zeta _{2}),(\Omega _{3},\zeta _{3})}$.

In an effort to simplify the constraint-equation expressions — and following the notation found in [EFE] — we adopt the intermediary parameters:

 ${\displaystyle \beta }$ ${\displaystyle =}$ ${\displaystyle {\frac {1}{4a^{2}}}{\biggl \{}(4a^{2}-b^{2}+c^{2})\mp {\biggl [}(4a^{2}+c^{2}-b^{2})^{2}-16a^{2}c^{2}{\biggr ]}^{1/2}{\biggr \}}\,;}$ [ EFE, Chapter 7, §47, Eq. (16) ] ${\displaystyle \gamma }$ ${\displaystyle =}$ ${\displaystyle {\frac {1}{4a^{2}}}{\biggl \{}(4a^{2}+b^{2}-c^{2})\mp {\biggl [}(4a^{2}+c^{2}-b^{2})^{2}-16a^{2}c^{2}{\biggr ]}^{1/2}{\biggr \}}\,.}$ [ EFE, Chapter 7, §47, Eq. (17) ]

As is emphasized in EFE (Chapter 7, §47, p. 131) "… the signs in front of the radicals, in the two expressions, go together. Furthermore, "the two roots … correspond to the fact that, consistent with Dedekind's theorem, two states of internal motions are compatible with the same external figure."

The five relevant constraint equations are,

 ${\displaystyle 2{\biggl [}{\frac {3\cdot 5}{2^{2}\pi abc\rho }}{\biggr ]}\Pi }$ ${\displaystyle =}$ ${\displaystyle 4\pi G\rho c^{2}{\biggl \{}A_{3}+~{\biggl [}{\frac {a^{2}(3b^{2}-4a^{2}+c^{2})B_{23}+b^{2}(a^{2}A_{1}-c^{2}A_{3})}{4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}}}{\biggr ]}{\biggr \}}\,.}$
 ${\displaystyle 0}$ ${\displaystyle =}$ ${\displaystyle ~\Omega _{2}^{2}\beta {\biggl [}{\frac {c^{2}-b^{2}}{c^{2}}}{\biggr ]}{\biggl [}{\frac {4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}}{2a^{2}b^{2}}}{\biggr ]}~+~2\pi G\rho {\biggl [}{\frac {a^{2}(3b^{2}-4a^{2}+c^{2})B_{23}+b^{2}(a^{2}A_{1}-c^{2}A_{3})}{a^{2}b^{2}}}{\biggr ]}\,,}$ [ EFE, Chapter 7, §51, Eq. (170) ]
 ${\displaystyle \zeta _{2}}$ ${\displaystyle =}$ ${\displaystyle ~-~\Omega _{2}\beta {\biggl [}{\frac {a^{2}+c^{2}}{c^{2}}}{\biggr ]}\,,}$ [ EFE, Chapter 7, §47, Eq. (12) ]
 ${\displaystyle 0}$ ${\displaystyle =}$ ${\displaystyle ~-~\Omega _{3}^{2}\gamma {\biggl [}{\frac {c^{2}-b^{2}}{b^{2}}}{\biggr ]}{\biggl [}{\frac {4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}}{2a^{2}c^{2}}}{\biggr ]}~+~2\pi G\rho {\biggl [}{\frac {a^{2}(b^{2}+3c^{2}-4a^{2})B_{23}+c^{2}(a^{2}A_{1}-b^{2}A_{2})}{a^{2}c^{2}}}{\biggr ]}\,.}$ [ EFE, Chapter 7, §51, Eq. (171) ]
 ${\displaystyle \zeta _{3}}$ ${\displaystyle =}$ ${\displaystyle ~-~\Omega _{3}\gamma {\biggl [}{\frac {a^{2}+b^{2}}{b^{2}}}{\biggr ]}\,,}$ [ EFE, Chapter 7, §47, Eq. (12) ]

where,

 ${\displaystyle B_{23}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {A_{2}b^{2}-A_{3}c^{2}}{b^{2}-c^{2}}}{\biggr ]}\,.}$ [ EFE, Chapter 3, §21, Eqs. (105) & (107) ]

Throughout the EFE discussion of Type I Riemann Ellipsoids, the assumption is made that ${\displaystyle b\geq a\geq c}$. Presumably then, when evaluating the above set of constraints, we must adopt the associations, ${\displaystyle (A_{1},a_{1})\leftrightarrow (A_{m},a_{m})}$, ${\displaystyle (A_{2},a_{2})\leftrightarrow (A_{\ell },a_{\ell })}$, and ${\displaystyle (A_{3},a_{3})\leftrightarrow (A_{s},a_{s})}$. This means that the coefficients, ${\displaystyle A_{1}}$, ${\displaystyle A_{2}}$, and ${\displaystyle A_{3}}$ are defined by the expressions,

 ${\displaystyle A_{2}}$ ${\displaystyle =}$ ${\displaystyle 2{\biggl (}{\frac {a_{1}}{a_{2}}}{\biggr )}{\biggl (}{\frac {a_{3}}{a_{2}}}{\biggr )}{\biggl [}{\frac {F(\theta ,k)-E(\theta ,k)}{k^{2}\sin ^{3}\theta }}{\biggr ]}\,,}$ ${\displaystyle A_{3}}$ ${\displaystyle =}$ ${\displaystyle 2{\biggl (}{\frac {a_{1}}{a_{2}}}{\biggr )}{\biggl [}{\frac {(a_{1}/a_{2})\sin \theta -(a_{3}/a_{2})E(\theta ,k)}{(1-k^{2})\sin ^{3}\theta }}{\biggr ]}\,,}$ ${\displaystyle A_{1}=2-(A_{2}+A_{3})}$ ${\displaystyle =}$ ${\displaystyle {\frac {2a_{1}a_{3}}{a_{2}^{2}}}{\biggl [}{\frac {E(\theta ,k)-~(1-k^{2})F(\theta ,k)-~(a_{3}/a_{1})k^{2}\sin \theta }{k^{2}(1-k^{2})\sin ^{3}\theta }}{\biggr ]}\,,}$

where, the arguments of the incomplete elliptic integrals are,

 ${\displaystyle \theta =\cos ^{-1}{\biggl (}{\frac {a_{3}}{a_{2}}}{\biggr )}}$ and ${\displaystyle k={\biggl [}{\frac {1-(a_{1}/a_{2})^{2}}{1-(a_{3}/a_{2})^{2}}}{\biggr ]}^{1/2}\,.}$

## Example Equilibrium Models

### Extracted from XXVIII

Here are equilibrium model parameters drawn from 📚 S. Chandrasekhar (1966, ApJ, Vol. 145, pp. 842 - 877) — referred to in [EFE] as Publication XXVIII.

 Data Extracted from Table 4 (p. 858) of S. Chandrasekhar (1966)The Equilibrium and the Stability of the Riemann Ellipsoids. II. The Astrophysical Journal, Vol. 145, pp. 842 - 877 Our (reverse-engineered) Determination The Properties of a Few Riemann Ellipsoids of Type I ${\displaystyle {\frac {a_{2}}{a_{1}}}}$ ${\displaystyle {\frac {a_{3}}{a_{1}}}}$ Direct Adjoint A1 A2 A3 ${\displaystyle \Omega _{2}}$ ${\displaystyle \Omega _{3}}$ ${\displaystyle \zeta _{2}}$ ${\displaystyle \zeta _{3}}$ ${\displaystyle (\zeta _{2}/\Omega _{2})}$ ${\displaystyle (\zeta _{3}/\Omega _{3})}$ ${\displaystyle \Omega _{2}^{\dagger }}$ ${\displaystyle \Omega _{3}^{\dagger }}$ ${\displaystyle \zeta _{2}^{\dagger }}$ ${\displaystyle \zeta _{3}^{\dagger }}$ ${\displaystyle (\zeta _{2}/\Omega _{2})^{\dagger }}$ ${\displaystyle (\zeta _{3}/\Omega _{3})^{\dagger }}$ 1.05263 0.41667 + 0.14834 +0.73257 -1.41355 -2.61578 -9.52912 -3.57069 +0.50185 +1.30617 -0.41783 -1.46707 -0.83258 -1.12318 0.43008706 0.40190235 1.16801059 1.25000 0.50000 +0.39259 +0.66536 -2.19983 -1.93895 -5.60338 -2.91414 +0.87993 +0.94583 -0.98148 -1.36398 -1.11541 -1.44210 0.50823343 0.37944073 1.11232585 1.44065 0.49273 +0.57179 +0.59896 -2.24560 -1.49425 -3.92732 -2.49474 +0.89032 +0.69996 -1.44219 -1.27866 -1.61986 -1.82676 0.52403947 0.32351421 1.15244632 1.66667 0.33333 +0.71251 +0.52815 -2.37502 -1.19714 -3.33331 -2.26667 +0.71251 +0.52815 -2.37502 -1.19714 -3.33331 -2.26667 0.41805282 0.20718125 1.37476593 1.36444 0.09518 +0.05632 +0.40707 -6.68275 -1.24612 -118.657 -3.06119 +0.63035 +0.59414 -0.59714 -0.85376 -0.94731 -1.43697 0.14374587 0.09152713 1.76472699 1.69351 0.11813 +0.15764 +0.38504 -6.27092 -1.02536 -39.7800 -2.66300 +0.73061 +0.44893 -1.35309 -0.87944 -1.85200 -1.95897 0.18178501 0.08464699 1.73356799 1.52303 0.05315 +0.03311 +0.29600 -9.85239 -0.84580 -297.565 -2.85743 +0.52221 +0.38805 -0.62474 -0.64518 -1.19634 -1.66262 0.08593434 0.04618515 1.86788051 1.78590 0.06233 +0.08952 +0.28558 -9.19424 -0.74657 -102.706 -2.61422 +0.57083 +0.31825 -1.4418 -0.66992 -2.52580 -2.10501 0.10258739 0.04358267 1.85382994 NOTE:   All frequencies are given in the unit of ${\displaystyle (\pi G\rho )^{1/2}}$.

Given the values of ${\displaystyle \Omega _{2}}$ and ${\displaystyle \Omega _{3}}$ from this table, we have reverse-engineered this problem and determined what numerical values of ${\displaystyle A_{1}}$, ${\displaystyle A_{2}}$, and ${\displaystyle A_{3}}$ were used by 📚 Chandrasekhar (1966; XXVIII) for various models. What follows are the expressions that have been derived via this reverse-engineering effort. The values of ${\displaystyle A_{1}}$, ${\displaystyle A_{2}}$, and ${\displaystyle A_{3}}$ that we have derived in this manner have been recorded in the last three columns of the table.

First …

 ${\displaystyle \beta {\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}{\biggl [}{\frac {b^{2}-c^{2}}{2c^{2}}}{\biggr ]}{\biggl [}4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}a^{2}(3b^{2}-4a^{2}+c^{2})B_{23}+b^{2}(a^{2}A_{1}-c^{2}A_{3}){\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle a^{2}(3b^{2}-4a^{2}+c^{2}){\biggl [}{\frac {A_{2}b^{2}-A_{3}c^{2}}{b^{2}-c^{2}}}{\biggr ]}+a^{2}b^{2}{\biggl [}2-(A_{2}+A_{3}){\biggr ]}-b^{2}c^{2}A_{3}}$ ${\displaystyle \Rightarrow ~~~{\frac {\beta }{4c^{2}}}{\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}\underbrace {(b^{2}-c^{2})^{2}{\biggl [}4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}{\biggr ]}} _{\Gamma }}$ ${\displaystyle =}$ ${\displaystyle a^{2}(3b^{2}-4a^{2}+c^{2}){\biggl [}A_{2}b^{2}-A_{3}c^{2}{\biggr ]}+a^{2}b^{2}(b^{2}-c^{2}){\biggl [}2-(A_{2}+A_{3}){\biggr ]}-b^{2}c^{2}(b^{2}-c^{2})A_{3}}$ ${\displaystyle =}$ ${\displaystyle 2a^{2}b^{2}(b^{2}-c^{2})+a^{2}b^{2}(3b^{2}-4a^{2}+c^{2})A_{2}-a^{2}b^{2}(b^{2}-c^{2})A_{2}-a^{2}c^{2}(3b^{2}-4a^{2}+c^{2})A_{3}-a^{2}b^{2}(b^{2}-c^{2})A_{3}-b^{2}c^{2}(b^{2}-c^{2})A_{3}}$ ${\displaystyle =}$ ${\displaystyle 2a^{2}b^{2}(b^{2}-c^{2})+a^{2}b^{2}[(3b^{2}-4a^{2}+c^{2})-(b^{2}-c^{2})]A_{2}-[a^{2}c^{2}(3b^{2}-4a^{2}+c^{2})+a^{2}b^{2}(b^{2}-c^{2})+b^{2}c^{2}(b^{2}-c^{2})]A_{3}}$ ${\displaystyle =}$ ${\displaystyle 2a^{2}b^{2}(b^{2}-c^{2})+2a^{2}b^{2}[b^{2}-2a^{2}+c^{2}]A_{2}-[(3a^{2}b^{2}c^{2}-4a^{4}c^{2}+a^{2}c^{4})+(a^{2}b^{4}-a^{2}b^{2}c^{2})+(b^{4}c^{2}-b^{2}c^{4})]A_{3}}$ ${\displaystyle =}$ ${\displaystyle \underbrace {2a^{2}b^{2}(b^{2}-c^{2})} _{\Lambda _{20}}+\underbrace {2a^{2}b^{2}[b^{2}-2a^{2}+c^{2}]} _{\Lambda _{22}}A_{2}-\underbrace {[2a^{2}b^{2}c^{2}-4a^{4}c^{2}+a^{2}c^{4}+a^{2}b^{4}+b^{4}c^{2}-b^{2}c^{4}]} _{\Lambda _{23}}A_{3}\,.}$

Next …

 ${\displaystyle \gamma {\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}{\biggl [}{\frac {c^{2}-b^{2}}{4b^{2}}}{\biggr ]}{\biggl [}4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}a^{2}(b^{2}+3c^{2}-4a^{2})B_{23}+c^{2}(a^{2}A_{1}-b^{2}A_{2}){\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle a^{2}(b^{2}+3c^{2}-4a^{2}){\biggl [}{\frac {A_{2}b^{2}-A_{3}c^{2}}{b^{2}-c^{2}}}{\biggr ]}+a^{2}c^{2}{\biggl [}2-(A_{2}+A_{3}){\biggr ]}-b^{2}c^{2}A_{2}}$ ${\displaystyle \Rightarrow ~~~-~{\frac {\gamma }{4b^{2}}}{\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}\underbrace {(b^{2}-c^{2})^{2}{\biggl [}4a^{4}-a^{2}(b^{2}+c^{2})+b^{2}c^{2}{\biggr ]}} _{\Gamma }}$ ${\displaystyle =}$ ${\displaystyle a^{2}(b^{2}+3c^{2}-4a^{2}){\biggl [}A_{2}b^{2}-A_{3}c^{2}{\biggr ]}+a^{2}c^{2}(b^{2}-c^{2}){\biggl [}2-(A_{2}+A_{3}){\biggr ]}-b^{2}c^{2}(b^{2}-c^{2})A_{2}}$ ${\displaystyle =}$ ${\displaystyle 2a^{2}c^{2}(b^{2}-c^{2})+a^{2}b^{2}(b^{2}+3c^{2}-4a^{2})A_{2}-a^{2}c^{2}(b^{2}-c^{2})A_{2}-b^{2}c^{2}(b^{2}-c^{2})A_{2}-a^{2}c^{2}(b^{2}+3c^{2}-4a^{2})A_{3}-a^{2}c^{2}(b^{2}-c^{2})A_{3}}$ ${\displaystyle =}$ ${\displaystyle 2a^{2}c^{2}(b^{2}-c^{2})+[a^{2}b^{2}(b^{2}+3c^{2}-4a^{2})-a^{2}c^{2}(b^{2}-c^{2})-b^{2}c^{2}(b^{2}-c^{2})]A_{2}-2a^{2}c^{2}[b^{2}+c^{2}-2a^{2}]A_{3}}$ ${\displaystyle =}$ ${\displaystyle \underbrace {2a^{2}c^{2}(b^{2}-c^{2})} _{\Lambda _{30}}+\underbrace {[2a^{2}b^{2}c^{2}-4a^{4}b^{2}+a^{2}b^{4}+a^{2}c^{4}-b^{4}c^{2}+b^{2}c^{4}]} _{\Lambda _{32}}A_{2}-\underbrace {2a^{2}c^{2}[b^{2}+c^{2}-2a^{2}]} _{\Lambda _{33}}A_{3}\,.}$

Hence,

 ${\displaystyle {\frac {\beta }{4c^{2}}}{\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}\Gamma }$ ${\displaystyle =}$ ${\displaystyle \Lambda _{20}+\Lambda _{22}A_{2}-\Lambda _{23}A_{3}}$ ${\displaystyle \Rightarrow ~~~A_{3}}$ ${\displaystyle =}$ ${\displaystyle {\frac {1}{\Lambda _{23}}}{\biggl [}\Lambda _{20}+\Lambda _{22}A_{2}-{\frac {\beta }{4c^{2}}}{\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}\,;}$

and,

 ${\displaystyle -~{\frac {\gamma }{4b^{2}}}{\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}\Gamma }$ ${\displaystyle =}$ ${\displaystyle \Lambda _{30}+\Lambda _{32}A_{2}-\Lambda _{33}A_{3}}$ ${\displaystyle \Rightarrow ~~~A_{3}}$ ${\displaystyle =}$ ${\displaystyle {\frac {1}{\Lambda _{33}}}{\biggl [}\Lambda _{30}+\Lambda _{32}A_{2}+{\frac {\gamma }{4b^{2}}}{\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}\,.}$

Put together, we find,

 ${\displaystyle {\biggl [}{\frac {\Lambda _{22}}{\Lambda _{23}}}{\biggr ]}A_{2}+{\frac {1}{\Lambda _{23}}}{\biggl [}\Lambda _{20}-{\frac {\beta }{4c^{2}}}{\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {\Lambda _{32}}{\Lambda _{33}}}{\biggr ]}A_{2}+{\frac {1}{\Lambda _{33}}}{\biggl [}\Lambda _{30}+{\frac {\gamma }{4b^{2}}}{\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}}$ ${\displaystyle \Rightarrow ~~~A_{2}{\biggl [}{\frac {\Lambda _{22}}{\Lambda _{23}}}-{\frac {\Lambda _{32}}{\Lambda _{33}}}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\frac {1}{\Lambda _{33}}}{\biggl [}\Lambda _{30}+{\frac {\gamma }{4b^{2}}}{\biggl (}{\frac {\Omega _{3}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}-{\frac {1}{\Lambda _{23}}}{\biggl [}\Lambda _{20}-{\frac {\beta }{4c^{2}}}{\biggl (}{\frac {\Omega _{2}^{2}}{\pi G\rho }}{\biggr )}\Gamma {\biggr ]}}$

 ${\displaystyle {\frac {a_{2}}{a_{1}}}}$ ${\displaystyle {\frac {a_{3}}{a_{1}}}}$ ${\displaystyle A_{1}}$ ${\displaystyle A_{2}}$ ${\displaystyle A_{3}}$ Direct Adjoint ${\displaystyle \beta _{+}}$ ${\displaystyle \gamma _{+}}$ ${\displaystyle -\beta _{+}(a^{2}+c^{2})/c^{2}}$ ${\displaystyle -\gamma _{+}(a^{2}+b^{2})/b^{2}}$ ${\displaystyle \beta _{-}}$ ${\displaystyle \gamma _{-}}$ ${\displaystyle -\beta _{-}(a^{2}+c^{2})/c^{2}}$ ${\displaystyle -\gamma _{-}(a^{2}+b^{2})/b^{2}}$ 1.25000 0.50000 0.50823343 0.37944073 1.11232585 1.12066896 1.77691896 -5.6033448 -2.9141471 0.22308104 0.87933104 -1.1154052 -1.4421029

### Examination of Lagrangian Flow in One Specific Model

This particular set of seven key parameters has been drawn from [EFE] Chapter 7, Table XIII (p. 170). The tabular layout presented here, also appears in a related discussion labeled, Challenges Pt. 2.

 ${\displaystyle ~a=a_{1}=1}$ ${\displaystyle ~b=a_{2}=1.25}$ ${\displaystyle ~c=a_{3}=0.4703}$ ${\displaystyle ~\Omega _{2}=0.3639}$ ${\displaystyle ~\Omega _{3}=0.6633}$ ${\displaystyle ~\zeta _{2}=-2.2794}$ ${\displaystyle ~\zeta _{3}=-1.9637}$

As a consequence — see an accompanying discussion (alternatively, ChallengesPt6) for details — the values of other parameters are …

 Example Values ${\displaystyle ~\tan \theta }$ ${\displaystyle ~=}$ ${\displaystyle ~-{\frac {\zeta _{2}}{\zeta _{3}}}{\biggl [}{\frac {a^{2}+b^{2}}{a^{2}+c^{2}}}{\biggr ]}{\frac {c^{2}}{b^{2}}}=-0.344793}$ ${\displaystyle ~~\theta =}$ ${\displaystyle ~-19.0238^{\circ }}$ ${\displaystyle ~\Lambda }$ ${\displaystyle ~\equiv }$ ${\displaystyle {\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}\zeta _{3}\cos \theta -{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}\sin \theta }$ ${\displaystyle ~\Lambda =}$ ${\displaystyle ~-1.332892}$ ${\displaystyle ~{\frac {y_{0}}{z_{0}}}}$ ${\displaystyle ~=}$ ${\displaystyle {\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}{\frac {\zeta _{2}}{\Lambda }}=-{\frac {b^{2}\sin \theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}}$ ${\displaystyle ~{\frac {y_{0}}{z_{0}}}=}$ ${\displaystyle ~+1.400377}$ ${\displaystyle ~{\frac {x_{\mathrm {max} }}{y_{\mathrm {max} }}}}$ ${\displaystyle ~=}$ ${\displaystyle ~{\biggl \{}\Lambda {\biggl [}{\frac {a^{2}+b^{2}}{b^{2}}}{\biggr ]}{\frac {\cos \theta }{\zeta _{3}}}{\biggr \}}^{1/2}}$ ${\displaystyle ~{\frac {x_{\mathrm {max} }}{y_{\mathrm {max} }}}=}$ ${\displaystyle ~+1.025854}$ ${\displaystyle ~=}$ ${\displaystyle {\frac {a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}{bc}}}$ ${\displaystyle ~|{\dot {\varphi }}|}$ ${\displaystyle ~=}$ ${\displaystyle ~{\biggl \{}\Lambda {\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}{\frac {\zeta _{3}}{\cos \theta }}{\biggr \}}^{1/2}}$   Correct! ${\displaystyle |{\dot {\varphi }}|=}$ ${\displaystyle 1.299300}$   Correct! ${\displaystyle ~{\dot {\varphi }}}$ ${\displaystyle ~=}$ ${\displaystyle ~{\frac {\zeta _{3}}{\cos \theta }}{\biggl [}{\frac {abc(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}{c^{2}(a^{2}+b^{2})}}{\biggr ]}}$ ${\displaystyle ~{\dot {\varphi }}=}$ ${\displaystyle ~-1.299300}$

## EFE Rotating Cartesian Frame

Concentric triaxial ellipsoids are defined by the expression,

 ${\displaystyle P}$ ${\displaystyle =}$ ${\displaystyle {\biggl (}{\frac {x}{a}}{\biggr )}^{2}+{\biggl (}{\frac {y}{b}}{\biggr )}^{2}+{\biggl (}{\frac {z}{c}}{\biggr )}^{2}\,,}$

where ${\displaystyle 0\leq P\leq 1}$ is a constant. As viewed from the rotating reference frame, the velocity flow-field everywhere inside ${\displaystyle (0\leq P<1)}$, and on the surface ${\displaystyle (P=1)}$ of the Type I Riemann ellipsoid is given by the expression — see, for example, an accompanying discussion of the Riemann flow-field,

 ${\displaystyle \mathbf {u} _{\mathrm {EFE} }}$ ${\displaystyle =}$ ${\displaystyle {\boldsymbol {\hat {\imath }}}{\biggl \{}-{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}\zeta _{3}y+{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z{\biggr \}}+{\boldsymbol {\hat {\jmath }}}{\biggl \{}+{\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}\zeta _{3}x{\biggr \}}+\mathbf {\hat {k}} {\biggl \{}-{\biggl [}{\frac {c^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}x{\biggr \}}\,.}$

In an accompanying discussion, we have shown that,

 ${\displaystyle \mathbf {u} _{\mathrm {EFE} }\cdot \nabla P}$ ${\displaystyle =}$ ${\displaystyle 0\,,}$

which means that, at every location inside and on the surface of the configuration, the velocity vector is orthogonal to a vector that is normal to the ellipsoidal surface at that location.

## Tilted Coordinate System

Figure 1:   Tilted Reference Frame
 ${\displaystyle ~{\boldsymbol {\hat {\imath }}}}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~{\boldsymbol {{\hat {\imath }}'}}\,,}$ ${\displaystyle ~{\boldsymbol {\hat {\jmath }}}}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~{\boldsymbol {{\hat {\jmath }}'}}\cos \theta -{\boldsymbol {{\hat {k}}'}}\sin \theta \,,}$ ${\displaystyle ~{\boldsymbol {\hat {k}}}}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~{\boldsymbol {{\hat {\jmath }}'}}\sin \theta +{\boldsymbol {{\hat {k}}'}}\cos \theta \,.}$
 ${\displaystyle ~x}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~x'\,,}$ ${\displaystyle ~y}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~y'\cos \theta -z'\sin \theta \,,}$ ${\displaystyle ~z-z_{0}}$ ${\displaystyle ~\rightarrow }$ ${\displaystyle ~y'\sin \theta +z'\cos \theta \,.}$

As we have detailed in our accompanying discussion, as viewed from this "tipped" frame, the concentric ellipsoidal surfaces of a Type I Riemann ellipsoid are defined by the expression,

 ${\displaystyle P'}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {y'\cos \theta -z'\sin \theta }{b}}{\biggr ]}^{2}+{\biggl [}{\frac {z_{0}+z'\cos \theta +y'\sin \theta }{c}}{\biggr ]}^{2}+{\biggl (}{\frac {x'}{a}}{\biggr )}^{2}\,.}$

and the velocity flow-field is given by the expression,

 ${\displaystyle {\boldsymbol {u'}}_{\mathrm {EFE} }}$ ${\displaystyle =}$ ${\displaystyle {\boldsymbol {{\hat {\imath }}'}}{\biggl \{}-{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}\zeta _{3}(y'\cos \theta -z'\sin \theta )+{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}(z_{0}+y'\sin \theta +z'\cos \theta ){\biggr \}}}$ ${\displaystyle ~+{\biggl [}{\boldsymbol {{\hat {\jmath }}'}}\cos \theta -\mathbf {{\hat {k}}'} \sin \theta {\biggr ]}{\biggl \{}{\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}\zeta _{3}x'{\biggr \}}+{\biggl [}{\boldsymbol {{\hat {\jmath }}'}}\sin \theta +\mathbf {{\hat {k}}'} \cos \theta {\biggr ]}{\biggl \{}-{\biggl [}{\frac {c^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}x'{\biggr \}}\,.}$

We also have explicitly demonstrated that, for any arbitrarily chosen value of the tilt angle, ${\displaystyle \theta }$,

 ${\displaystyle \mathbf {u'} _{\mathrm {EFE} }\cdot \nabla P'}$ ${\displaystyle =}$ ${\displaystyle 0\,.}$

## Preferred Tilt

As we discuss elsewhere, if we specifically choose,

 ${\displaystyle \tan \theta }$ ${\displaystyle =}$ ${\displaystyle -{\frac {\beta \Omega _{2}}{\gamma \Omega _{3}}}=-{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{b^{2}(a^{2}+c^{2})}}{\biggr ]}{\frac {\zeta _{2}}{\zeta _{3}}}\,.}$

the component of the flow-field in the ${\displaystyle \mathbf {{\hat {k}}'} }$ direction vanishes; that is, in this specific case, as viewed from the tilted reference frame, all of the fluid motion is confined to the x'-y' plane. Notice that this plane is not parallel to any of the three principal planes of the Type I Riemann ellipsoid. I have not seen this fluid-flow behavior previously described in the published literature. Maybe Norman Lebovitz will know.

The three panels of Figure 2, and the text description that follows, have been drawn from a separate discussion.

Figure 2a Figure 2b

Figure 2c

As has been described in an accompanying discussion of Riemann Type 1 ellipsoids, we have used COLLADA to construct an animated and interactive 3D scene that displays in purple the surface of an example Type I ellipsoid; panels a and b of Figure 2 show what this ellipsoid looks like when viewed from two different perspectives. (As a reminder — see the explanation accompanying Figure 2 of that accompanying discussion — the ellipsoid is tilted about the x-coordinate axis at an angle of 61.25° to the equilibrium spin axis, which is shown in green.) Yellow markers also have been placed in this 3D scene at each of the coordinate locations specified in the table that accompanies that discussion. From the perspective presented in Figure 2b, we can immediately identify three separate, nearly circular trajectories; the largest one corresponds to our choice of z0 = -0.25, the smallest corresponds to our choice of z0 = -0.60, and the one of intermediate size correspond to our choice of z0 = -0.4310. When viewed from the perspective presented in Figure 2a, we see that these three trajectories define three separate planes; each plane is tipped at an angle of θ = -19.02° to the untilted equatorial, x-y plane of the purple ellipsoid.

## Lagrangian Fluid Trajectories

### Off-Center Ellipse

The yellow dots in Figures 2a and 2b trace three different, nearly circular, closed curves. These curves each show what results from the intersection of the surface of the triaxial ellipsoid and a plane that is tilted with respect to the x = x' axis by the specially chosen angle, ${\displaystyle \theta }$; the different curves result from different choices of the intersection point, ${\displaystyle z_{0}}$. Several additional such curves are displayed in Figure 2c. Each of these curves necessarily also identifies the trajectory that is followed by a fluid element that sits on the surface of the ellipsoid.

We have determined that the ${\displaystyle y'(x')}$ function that defines each closed curve is describable analytically by the expression,

 ${\displaystyle {\biggl [}{\frac {y'-y'_{0}}{y'_{\mathrm {max} }}}{\biggr ]}^{2}}$ ${\displaystyle =}$ ${\displaystyle 1-{\biggl (}{\frac {x'}{x'_{\mathrm {max} }}}{\biggr )}^{2}\,,}$

where (see independent derivations with identical results from ChallengesPt2 and ChallengesPt6),

 ${\displaystyle x'_{\mathrm {max} }}$ ${\displaystyle =}$ ${\displaystyle a{\biggl [}1-{\frac {z_{0}^{2}\cos ^{2}\theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}^{1/2}}$ ${\displaystyle =}$ ${\displaystyle a{\biggl [}{\frac {(c^{2}-z_{0}^{2})\cos ^{2}\theta +b^{2}\sin ^{2}\theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}^{1/2}\,,}$ ${\displaystyle y'_{\mathrm {max} }}$ ${\displaystyle =}$ ${\displaystyle bc{\biggl [}(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )-z_{0}^{2}\cos ^{2}\theta {\biggr ]}^{1/2}(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{-1}}$ ${\displaystyle =}$ ${\displaystyle bc{\biggl [}{\frac {(c^{2}-z_{0}^{2})\cos ^{2}\theta +b^{2}\sin ^{2}\theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{2}}}{\biggr ]}^{1/2}\,,}$ ${\displaystyle y'_{0}}$ ${\displaystyle =}$ ${\displaystyle -{\frac {z_{0}b^{2}\sin \theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}\,.}$

This is the equation that describes a closed ellipse with semi-axes, ${\displaystyle (x'_{\mathrm {max} },y'_{\mathrm {max} })}$, that is offset from the z'-axis along the y'-axis by a distance, ${\displaystyle y'_{0}}$. Notice that the degree of flattening,

 ${\displaystyle {\biggl [}{\frac {x'}{y'}}{\biggr ]}_{\mathrm {max} }}$ ${\displaystyle =}$ ${\displaystyle {\frac {a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}{bc}}\,,}$

is independent of ${\displaystyle z_{0}}$; that is to say, the degree of flattening of all of the elliptical trajectories is identical! Notice, as well, that the y-offset, ${\displaystyle y'_{0}}$, is linearly proportional to ${\displaystyle z_{0}}$.

In a separate discussion, we have demonstrated that the compact version of the tilted flow-field is everywhere orthogonal to the elliptical trajectory whose analytic definition is given by the off-set ellipse equation.

### Associated Lagrangian Velocities

Let's presume that, as a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,

 ${\displaystyle ~x'}$ ${\displaystyle ~=}$ ${\displaystyle ~x_{\mathrm {max} }\cos({\dot {\varphi }}t)}$ and, ${\displaystyle ~y'-y_{0}}$ ${\displaystyle ~=}$ ${\displaystyle ~y_{\mathrm {max} }\sin({\dot {\varphi }}t)\,,}$ ${\displaystyle ~{\dot {x}}'}$ ${\displaystyle ~=}$ ${\displaystyle ~-x_{\mathrm {max} }~{\dot {\varphi }}\cdot \sin({\dot {\varphi }}t)=(y_{0}-y'){\biggl [}{\frac {x_{\mathrm {max} }}{y_{\mathrm {max} }}}{\biggr ]}{\dot {\varphi }}}$ and, ${\displaystyle ~{\dot {y}}'}$ ${\displaystyle ~=}$ ${\displaystyle ~y_{\mathrm {max} }~{\dot {\varphi }}\cdot \cos({\dot {\varphi }}t)=x'{\biggl [}{\frac {y_{\mathrm {max} }}{x_{\mathrm {max} }}}{\biggr ]}{\dot {\varphi }}\,.}$

If this is the correct description of the Lagrangian motion in a ${\displaystyle z'=0}$ plane of motion, then the velocity components, ${\displaystyle {\dot {x}}'}$ and ${\displaystyle {\dot {y}}'}$, must match the respective components of the Riemann flow-field, namely,

 ${\displaystyle {\boldsymbol {u'}}_{\mathrm {EFE} }{\biggr |}_{z'=0}}$ ${\displaystyle =}$ ${\displaystyle {\boldsymbol {{\hat {\imath }}'}}{\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}{\biggr \}}+{\boldsymbol {{\hat {\imath }}'}}{\biggl \{}{\cancelto {0}{z'(c^{2}-b^{2})\tan \theta }}-y'[c^{2}+b^{2}\tan ^{2}\theta ]{\biggr \}}{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}+{\boldsymbol {{\hat {\jmath }}'}}{\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}{\frac {\zeta _{3}~x'}{\cos \theta }}\,.}$

First, let's compare the ${\displaystyle {\boldsymbol {{\hat {\jmath }}'}}}$ components.

 ${\displaystyle x'{\biggl [}{\frac {y'}{x'}}{\biggr ]}_{\mathrm {max} }{\dot {\varphi }}}$ ${\displaystyle \leftrightarrow }$ ${\displaystyle x'{\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}{\frac {\zeta _{3}}{\cos \theta }}}$ ${\displaystyle \Rightarrow ~~~{\dot {\varphi }}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}{\frac {\zeta _{3}}{\cos \theta }}{\biggl [}{\frac {x'}{y'}}{\biggr ]}_{\mathrm {max} }}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {b^{2}}{a^{2}+b^{2}}}{\biggr ]}{\frac {\zeta _{3}}{\cos \theta }}{\biggl [}{\frac {a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}{bc}}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\frac {\zeta _{3}}{\cos \theta }}{\biggl [}{\frac {abc(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}{c^{2}(a^{2}+b^{2})}}{\biggr ]}\,.}$

Now let's compare the ${\displaystyle {\boldsymbol {{\hat {\imath }}'}}}$ components.

 ${\displaystyle (y_{0}-y'){\biggl [}{\frac {x'}{y'}}{\biggr ]}_{\mathrm {max} }{\dot {\varphi }}}$ ${\displaystyle \leftrightarrow }$ ${\displaystyle {\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}-y'[c^{2}+b^{2}\tan ^{2}\theta ]{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}}$ ${\displaystyle \Rightarrow ~~~(y_{0}-y'){\dot {\varphi }}}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}-y'[c^{2}+b^{2}\tan ^{2}\theta ]{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}{\biggr \}}{\biggl [}{\frac {y'}{x'}}{\biggr ]}_{\mathrm {max} }}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}-y'{\biggl [}c^{2}+b^{2}\tan ^{2}\theta {\biggr ]}{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}{\biggr \}}{\biggl [}{\frac {bc}{a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}}{\biggr ]}\,.}$

Inserting the just-derived expression for ${\displaystyle {\dot {\varphi }}}$ into this last expression gives,

 ${\displaystyle (y_{0}-y')}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}-y'{\biggl [}c^{2}+b^{2}\tan ^{2}\theta {\biggr ]}{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}{\biggr \}}{\biggl [}{\frac {bc}{a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}}{\biggr ]}{\biggl [}{\frac {a^{2}+b^{2}}{b^{2}}}{\biggr ]}{\frac {\cos \theta }{\zeta _{3}}}{\biggl [}{\frac {bc}{a(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )^{1/2}}}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}-y'{\biggl [}c^{2}+b^{2}\tan ^{2}\theta {\biggr ]}{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}{\biggr \}}{\frac {\cos \theta }{\zeta _{3}}}{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{a^{2}(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {a^{2}}{a^{2}+c^{2}}}{\biggr ]}\zeta _{2}z_{0}{\biggr \}}{\frac {\cos \theta }{\zeta _{3}}}{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{a^{2}(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}+{\biggl \{}-y'{\biggl [}c^{2}+b^{2}\tan ^{2}\theta {\biggr ]}{\frac {\zeta _{3}\cos \theta }{c^{2}}}{\biggl [}{\frac {a^{2}}{a^{2}+b^{2}}}{\biggr ]}{\biggr \}}{\frac {\cos \theta }{\zeta _{3}}}{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{a^{2}(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}}$ ${\displaystyle =}$ ${\displaystyle {\biggl \{}{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{b^{2}(a^{2}+c^{2})}}{\biggr ]}{\frac {\zeta _{2}}{\zeta _{3}}}{\biggr \}}{\biggl [}{\frac {b^{2}z_{0}\cos \theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}-y'\,.}$

But,

 ${\displaystyle \tan \theta }$ ${\displaystyle =}$ ${\displaystyle -{\biggl [}{\frac {c^{2}(a^{2}+b^{2})}{b^{2}(a^{2}+c^{2})}}{\biggr ]}{\frac {\zeta _{2}}{\zeta _{3}}}\,.}$

Hence,

 ${\displaystyle (y_{0}-y')}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {-b^{2}z_{0}\sin \theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}-y'\,.}$ ${\displaystyle \Rightarrow ~~~y_{0}}$ ${\displaystyle =}$ ${\displaystyle {\biggl [}{\frac {-b^{2}z_{0}\sin \theta }{(c^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta )}}{\biggr ]}\,.}$

SUCCESS !!!