Apps/SMS: Difference between revisions

From jetwiki
Jump to navigation Jump to search
 
(20 intermediate revisions by the same user not shown)
Line 2: Line 2:
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Rotating, Supermassive Stars=
=Rotating, Supermassive Stars=
{| class="PGEclass" style="float:left; margin-right: 20px; border-style: solid; border-width: 3px border-color: black"
|-
! style="height: 125px; width: 125px; background-color:white;" |
<font size="-1">[[H_BookTiledMenu#Context|Bond, Arnett, &amp; Carr<br />(1984)]]</font>
|}


Here we draw upon the work of [http://adsabs.harvard.edu/abs/1984ApJ...280..825B J. R. Bond, W. D. Arnett, &amp; B. J. Carr] (1984, ApJ, 280, 825; hereafter BAC84) who were among the first to seriously address the question of the fate of very massive (stellar) objects.   
Here we draw upon the work of {{ BAC84full }} &#8212; hereafter {{ BAC84hereafter }} &#8212; who were among the first to seriously address the question of the fate of very massive (stellar) objects.   
&nbsp;<br />


==Equation of State==
==Equation of State==
Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our [[SR#Equation_of_State|introductory discussion of ''supplemental relations'']] and closely parallels [[SSC/Structure/BiPolytropes/Analytic1.5_3#Envelope|our review of the properties of the envelope]] that [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M E. A. Milne (1930, MNRAS, 91, 4)] used to construct a bipolytropic sphere.
Our discussion of the equation of state (EOS) that was used by {{ BAC84hereafter }} draws on the terminology that has already been adopted in our [[SR#Equation_of_State|introductory discussion of ''supplemental relations'']] and closely parallels [[SSC/Structure/BiPolytropes/Analytic1.53#Envelope|our review of the properties of the envelope]] that {{ Milne30full }} used to construct a bipolytropic sphere.


===Expression for Total Pressure===
===Expression for Total Pressure===
Ignoring the component due to a degenerate electron gas, <math>P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components:  a component of ideal gas pressure, and a component of radiation pressure.  That is, in BAC84 the total pressure is given by the expression,
Ignoring the component due to a degenerate electron gas, <math>P_\mathrm{deg}</math>, the total gas pressure can be expressed as the sum of two separate components:  a component of ideal gas pressure, and a component of radiation pressure.  That is, in {{ BAC84hereafter }} the total pressure is given by the expression,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 44: Line 50:
</table>
</table>


Now, BAC84 define the rest-mass density in terms of the mean baryon mass, <math>m_B</math>, via the expression, <math>\rho = m_B n</math>, and write (see their equation 1),
Now, {{ BAC84hereafter }} define the rest-mass density in terms of the mean baryon mass, <math>m_B</math>, via the expression, <math>\rho = m_B n</math>, and write (see their equation 1),
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 92: Line 98:


===Ratio of Radiation Pressure to Gas Pressure ===
===Ratio of Radiation Pressure to Gas Pressure ===
Following [http://adsabs.harvard.edu/abs/1930MNRAS..91....4M Milne (1930)], we have defined the parameter, <math>\beta</math>, as the ratio of gas pressure to total pressure.  That is, in the context of BAC84, we have,
Following {{ Milne30 }}, we have defined the parameter, <math>\beta</math>, as the ratio of gas pressure to total pressure.  That is, in the context of {{ BAC84hereafter }}, we have,
<div align="center">
<div align="center">
<math>\beta \equiv \frac{P_\mathrm{gas} }{P}  \, ,</math>
<math>\beta \equiv \frac{P_\mathrm{gas} }{P}  \, ,</math>
Line 103: Line 109:
</div>
</div>
   
   
Using a different notation, BAC84 (see their equation 5) define <span title="Ratio of radiation pressure to gas pressure"><math>\sigma</math></span> as the ratio of the radiation pressure to the gas pressure.  Therefore, in converting from our notation to theirs we have,
Using a different notation, {{ BAC84hereafter }} (see their equation 5) define <span title="Ratio of radiation pressure to gas pressure"><math>\sigma</math></span> as the ratio of the radiation pressure to the gas pressure.  Therefore, in converting from our notation to theirs we have,
<div align="center">
<div align="center">
<math>\sigma = \frac{1-\beta}{\beta} ~~~~\Rightarrow ~~~~ \beta = (1 + \sigma)^{-1} \, , </math>
<math>\sigma = \frac{1-\beta}{\beta} ~~~~\Rightarrow ~~~~ \beta = (1 + \sigma)^{-1} \, , </math>
Line 115: Line 121:
= \frac{a_\mathrm{rad} T^3}{3Y_T n k} \, ,</math>
= \frac{a_\mathrm{rad} T^3}{3Y_T n k} \, ,</math>
</div>
</div>
which is precisely the definition provided in equation (5) of BAC84.
which is precisely the definition provided in equation (5) of {{ BAC84hereafter }}.


===Expression for Adiabatic Exponent===
===Expression for Adiabatic Exponent===
Line 128: Line 134:


<tr><td align="center" colspan="3">
<tr><td align="center" colspan="3">
Eq. (24) from [http://adsabs.harvard.edu/abs/1918MNRAS..79R...2E A. S. Eddington (1918, MNRAS, 79, 2)]
Eq. (24) from {{ Eddington18 }}
</td></tr>
</td></tr>
<tr>
<tr>
Line 187: Line 193:


====For any value of the ratio of specific heats====
====For any value of the ratio of specific heats====
From equation (2) of [http://adsabs.harvard.edu/abs/1941ApJ....94..124L Ledoux &amp; Pekeris] (1941, ApJ, 94, 124) &#8212; see, for example, [[User:Tohline/SSC/Perturbations#Ledoux_and_Pekeris_.281941.29|our brief summary of this work]] &#8212; or, equally well, from equation (131) in Chapter II of [[User:Tohline/Appendix/References#C67|<b>[<font color="red">C67</font>]</b>]], we see that when the total pressure is of the form being considered here, a general expression for the adiabatic exponent,
From equation (2) of {{ LP41full }} &#8212; see, for example, [[SSC/Perturbations#Ledoux_and_Pekeris_.281941.29|our brief summary of this work]] &#8212; or, equally well, from equation (131) in Chapter II of [[Appendix/References#C67|<b>[<font color="red">C67</font>]</b>]], we see that when the total pressure is of the form being considered here, a general expression for the adiabatic exponent,
<div align="center">
<div align="center">
<math>\Gamma_1 \equiv \frac{d\ln P}{d\ln\rho} \, ,</math>
<math>\Gamma_1 \equiv \frac{d\ln P}{d\ln\rho} \, ,</math>
Line 244: Line 250:


====Used by BAC84====
====Used by BAC84====
On the other hand, without derivation BAC84 state (see their equation 4) that the adiabatic exponent is,
On the other hand, without derivation {{ BAC84hereafter }} state (see their equation 4) that the adiabatic exponent is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 278: Line 284:
</table>
</table>
</div>
</div>
Clearly, in the limit <math>~\sigma \rightarrow \infty</math>, this gives <math>~\Gamma_1 \rightarrow 4/3</math>, which, as it should, matches the limiting value obtained from the [http://adsabs.harvard.edu/abs/1941ApJ....94..124L Ledoux &amp; Pekeris (1941)] expression when <math>~\beta = 0</math>.   
Clearly, in the limit <math>~\sigma \rightarrow \infty</math>, this gives <math>~\Gamma_1 \rightarrow 4/3</math>, which, as it should, matches the limiting value obtained from the {{ LP41 }} expression when <math>~\beta = 0</math>.   


BAC84 do not explicitly state what value they used for the ratio of specific heats when deriving their expression for the adiabatic exponent.  But this can be deduced by examining how their expression behaves in the limit of no radiation pressure, that is, for <math>~\sigma = 0</math>.  In this limit, the BAC84 expression gives,
{{ BAC84hereafter }} do not explicitly state what value they used for the ratio of specific heats when deriving their expression for the adiabatic exponent.  But this can be deduced by examining how their expression behaves in the limit of no radiation pressure, that is, for <math>~\sigma = 0</math>.  In this limit, the {{ BAC84hereafter }} expression gives,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 298: Line 304:
</div>
</div>


The general BAC84 expression should therefore match the (even more) general [http://adsabs.harvard.edu/abs/1941ApJ....94..124L Ledoux &amp; Pekeris (1941)] expression if we set <math>~\gamma = \tfrac{5}{3}</math>.  Let's check this out.  Inserting this specific value of <math>~\gamma</math>, and remembering (from above) that,
The general {{ BAC84hereafter }} expression should therefore match the (even more) general {{ LP41 }} expression if we set <math>~\gamma = \tfrac{5}{3}</math>.  Let's check this out.  Inserting this specific value of <math>~\gamma</math>, and remembering (from above) that,
<div align="center">
<div align="center">
<math>\sigma = \frac{1-\beta }{\beta} \, ,</math>
<math>\sigma = \frac{1-\beta }{\beta} \, ,</math>
</div>
</div>
the [http://adsabs.harvard.edu/abs/1941ApJ....94..124L Ledoux &amp; Pekeris (1941)] expression for the adiabatic exponent becomes,
the {{ LP41 }} expression for the adiabatic exponent becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 533: Line 539:


===Mass Normalization===
===Mass Normalization===
Now, according to BAC84 (see their equation 8), when the total pressure is written in polytropic form &#8212; specifically, if we set,
Now, according to {{ BAC84hereafter }} (see their equation 8), when the total pressure is written in polytropic form &#8212; specifically, if we set,
<div align="center">
<div align="center">
<math>P = K\rho^{(1+1/n_p)} </math>
<math>P = K\rho^{(1+1/n_p)} </math>
Line 558: Line 564:


====Polytropic Index Equals 3====
====Polytropic Index Equals 3====
Referencing our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic1.5_3#HighlightedExpressions|separate discussion of Milne's (1930) work]], when <math>~n_p = 3</math>, the polytropic constant is related to the relevant set of physical parameters via the relation,
Referencing our [[SSC/Structure/BiPolytropes/Analytic1.53#HighlightedExpressions|separate discussion of Milne's (1930) work]], when <math>~n_p = 3</math>, the polytropic constant is related to the relevant set of physical parameters via the relation,


<div align="center">
<div align="center">
Line 575: Line 581:
</table>
</table>
</div>
</div>
Adopting the BAC84 terminology, this means that,
Adopting the {{ BAC84hereafter }} terminology, this means that,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 628: Line 634:
</table>
</table>
</div>
</div>
When radiation pressure significantly dominates over gas pressure &#8212; that is, in the limit <math>~\sigma \gg 1</math> &#8212; the leading factor is approximately unity, in which case we see that this expression for <math>~M_\mathrm{norm}</math> exactly matches the expression for <math>~M_{u,3}</math> given by equation (10) of BAC84.
When radiation pressure significantly dominates over gas pressure &#8212; that is, in the limit <math>~\sigma \gg 1</math> &#8212; the leading factor is approximately unity, in which case we see that this expression for <math>~M_\mathrm{norm}</math> exactly matches the expression for <math>~M_{u,3}</math> given by equation (10) of {{ BAC84hereafter }}.


====Polytropic Index Slightly Less Than 3====
====Polytropic Index Slightly Less Than 3====
Line 737: Line 743:
</table>
</table>
</div>
</div>
This matches exactly expression (7) in BAC84.  Again from [[#GammaApprox|above]] &#8212; and continuing to assume <math>~\sigma \gg 1</math> &#8212; we have,
This matches exactly expression (7) in {{ BAC84hereafter }}.  Again from [[#GammaApprox|above]] &#8212; and continuing to assume <math>~\sigma \gg 1</math> &#8212; we have,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 882: Line 888:
\approx \biggl( 1 - \frac{3}{4\sigma^2}\biggr) (n m_B)^{1/8\sigma^2}\, ,</math>
\approx \biggl( 1 - \frac{3}{4\sigma^2}\biggr) (n m_B)^{1/8\sigma^2}\, ,</math>
</div>
</div>
which certainly is close to unity when <math>~\sigma \gg 1</math>.  After setting <math>~f=1</math>, this last expression for <math>~M_u</math> exactly matches the expression presented as equation (9) in BAC84.
which certainly is close to unity when <math>~\sigma \gg 1</math>.  After setting <math>~f=1</math>, this last expression for <math>~M_u</math> exactly matches the expression presented as equation (9) in {{ BAC84hereafter }}.


==Entropy of Radiation Field==
==Entropy of Radiation Field==
Line 932: Line 938:
</tr>
</tr>
</table>
</table>
where,
where [with units of mass &times; (time)<sup>-3</sup> K<sup>-4</sup>],


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 951: Line 957:
</table>
</table>
In discussions of the thermodynamic properties of (photon) radiation fields, the radiation [density] constant, {{ Template:Math/C_RadiationConstant }}, appears in many physical relations.  It is related to the Steffan-Boltzmann constant via the simple expression,
In discussions of the thermodynamic properties of (photon) radiation fields, the radiation [density] constant, {{ Template:Math/C_RadiationConstant }}, appears in many physical relations.  It is related to the Steffan-Boltzmann constant via the simple expression,
<div align="center"><math>a_\mathrm{rad} = \frac{4 \sigma_\mathrm{SB}}{c} \, .</math></div>
<div align="center"><math>a_\mathrm{rad} = \frac{4 \sigma_\mathrm{SB}}{c} \, ,</math></div>
and has units of energy per unit volume &times; K<sup>-4</sup>.


===Photon Entropy===
===Photon Entropy===
Here are expressions from the published literature that &#8212; to within an additive constant &#8212; give the entropy of the (photon) radiation field.  We begin with the expression found in  [https://ui.adsabs.harvard.edu/abs/1986ApJ...307..675F/abstract G. M. Fuller, S. E. Woosley, &amp; T. A. Weaver (1986, ApJ, 307, 675; hereafter FWW86)], primarily because the authors provide for comparison a numerical evaluation of the expression's leading coefficient.
Here are expressions from the published literature that &#8212; to within an additive constant &#8212; give the entropy of the (photon) radiation field.  We begin with [<b>[[Appendix/References#Clayton68|<font color="red">Clayton68</font>]]</b>], who states that, "&hellip; the entropy per gram of the photon [field]" is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>s_\mathrm{rad}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{4a_\mathrm{rad}T^3}{3\rho} \, .  
</math>
  </td>
</tr>
</table>
[<b>[[Appendix/References#Clayton68|<font color="red">Clayton68</font>]]</b>], Chapter 2 (p. 121), Eq. (2-136)<br />
[[Appendix/References#Shu92|[<b><font color="red">Shu92</font></b>]]], Vol. I, Chapter 9 (p. 82), Eq. (9.22)
</div>
Providing the same expression, [[Appendix/References#Shu92|[<b><font color="red">Shu92</font></b>]]] states that it  is a measure of "&hellip; the entropy of blackbody radiation per unit mass of fluid."  From the group of terms on the right-hand side of this expression, we conclude that <math>s_\mathrm{rad}</math> has units of specific energy per Kelvin. This is consistent with the units that are traditionally associated with entropy; see, for example, our [[PGE/FirstLawOfThermodynamics#VariableDimensions|separate discussion of the dimensions of various thermodynamic variables]].
 
According to [[Appendix/References#ST83|[<b><font color="red">ST83</font></b>]]], "&hellip; the photon entropy per baryon" is,
<table border="0" align="center" cellpadding="5">
<tr>
  <td align="right">
<math>s_r = \frac{4}{3} \frac{a_\mathrm{rad}T^3}{n}</math>
  </td>
  <td align="center">=</td>
  <td align="left">
<math>\frac{4m_H a_\mathrm{rad} T^3}{3\rho} \, ,</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[[Appendix/References#ST83|[<b><font color="red">ST83</font></b>]]], &sect;17.2, Eq. (17.2.2) &amp; &sect;17.3, Eq. (17.3.7)
  </td>
</tr>
</table>
where, <span title="Hydrogen mass"><math>m_H</math></span> is the mass of a hydrogen atom, and <math>n = \rho/m_H</math> is the baryon number density.  We conclude, therefore, that <math>s_\mathrm{rad} = s_r/m_H</math>.
 
We have also found it useful to examine the expression for the entropy of a radiation field used by {{ FWW86full }} &#8212; hereafter {{ FWW86hereafter }} &#8212; primarily because the authors provide, for comparison, a numerical evaluation of the expression's leading coefficient.


<table border="1" width="80%" align="center" cellpadding="8">
<table border="1" width="80%" align="center" cellpadding="8">
<tr><td align="left">
<tr><td align="left">
In terms of the variables, {{ Template:Math/VAR_Temperature01 }} and {{ Template:Math/VAR_Density01 }}, and the four physical constants, {{ Template:Math/C_PlanckConstant }}, {{ Template:Math/C_SpeedOfLight }}, {{ Template:Math/C_BoltzmannConstant }}, {{ Template:Math/C_AvogadroConstant }}, [https://ui.adsabs.harvard.edu/abs/1986ApJ...307..675F/abstract FWW86] state that the "&hellip; entropy per baryon &hellip; for photons is,"
In terms of the variables, {{ Template:Math/VAR_Temperature01 }} and {{ Template:Math/VAR_Density01 }}, and the four physical constants, {{ Template:Math/C_PlanckConstant }}, {{ Template:Math/C_SpeedOfLight }}, {{ Template:Math/C_BoltzmannConstant }}, {{ Template:Math/C_AvogadroConstant }}, {{ FWW86hereafter }} state that the "&hellip; entropy per baryon &hellip; for photons is,"
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 976: Line 1,025:
<tr>
<tr>
<td align="center" colspan="3">
<td align="center" colspan="3">
[https://ui.adsabs.harvard.edu/abs/1986ApJ...307..675F/abstract FWW86] &sect;III (p. 678), Eq. (11)
{{ FWW86hereafter }} &sect;III (p. 678), Eq. (11)
</td>
</td>
</tr>
</tr>
Line 1,029: Line 1,078:
</tr>
</tr>
</table>
</table>
This is consistent with the statement in [https://ui.adsabs.harvard.edu/abs/1986ApJ...307..675F/abstract FWW86] that, when energy is measured in MeV, the leading coefficient is, <math>1.905 \times 10^8</math>.
This is consistent with the statement in {{ FWW86hereafter }} that, when energy is measured in MeV, the leading coefficient is, <math>1.905 \times 10^8</math>.


Notice that, because the quantity, {{ Template:Math/C_BoltzmannConstant }}{{ Template:Math/VAR_Temperature01 }}, has units of energy, the dimension of <math>s_\gamma</math> is inverse mass.  In contrast to this, as has been highlighted in our [[PGE/FirstLawOfThermodynamics#VariableDimensions|separate discussion of the physical units of various thermodynamic variables]], we expect the units of entropy to be specific energy per Kelvin.  We suspect that, for convenience, [https://ui.adsabs.harvard.edu/abs/1986ApJ...307..675F/abstract FWW86] have dropped a leading factor of {{ Template:Math/C_BoltzmannConstant }} on the RHS of their expression for <math>s_\gamma</math> and that it is appropriate to draw from their presentation that the entropy of the radiation field is,
Notice that, because the quantity, {{ Template:Math/C_BoltzmannConstant }}{{ Template:Math/VAR_Temperature01 }}, has units of energy, the dimension of <math>s_\gamma</math> is inverse mass.  In contrast to this, as has been highlighted in our [[PGE/FirstLawOfThermodynamics#VariableDimensions|separate discussion of the physical units of various thermodynamic variables]], we expect the units of specific entropy <math>(s_\mathrm{rad})</math> to be specific energy per Kelvin.  We suspect that, for convenience, {{ FWW86hereafter }} have dropped a leading factor of {{ Template:Math/C_BoltzmannConstant }} on the RHS of their expression for <math>s_\gamma</math> and that it is appropriate to draw from their presentation that the specific entropy of the radiation field is,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 1,043: Line 1,092:
   <td align="left">
   <td align="left">
<math>  
<math>  
\frac{s_\gamma}{k}.  
k s_\gamma \, .  
</math>
</math>
   </td>
   </td>
Line 1,052: Line 1,101:




[[Image:CommentButton02.png|right|100px|Note that in the BAC84 publication, the Boltzmann constant, k, does not appear in this expression because "T is the temperature in energy units (Boltzmann constant = 1)."]]Similarly, from [https://ui.adsabs.harvard.edu/abs/1984ApJ...280..825B/abstract J. R. Bond, W. D. Arnett, and B. J. Carr (1984, ApJ, 280, 825; hereafter BAC84)] we find that "&hellip; the photon entropy [is],"
[[Image:CommentButton02.png|right|100px|Note that in the {{ BAC84hereafter }} publication, the Boltzmann constant, k, does not appear in this expression because "T is the temperature in energy units (Boltzmann constant = 1)."]]Similarly, from {{ BAC84hereafter }} we find that "&hellip; the photon entropy [is],"


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 1,070: Line 1,119:
</tr>
</tr>
<tr>
<tr>
   <td align="center" colspan="3">[https://ui.adsabs.harvard.edu/abs/1984ApJ...280..825B/abstract BAC84], &sect;2b (p. 827), Eq. (5)</td>
   <td align="center" colspan="3">{{ BAC84hereafter }}, &sect;2b (p. 827), Eq. (5)</td>
</tr>
</tr>
</table>
</table>
where <math>n_B</math> is the "baryon density."   
where <math>n_B</math> is the "baryon density."   
In terms of the physical constant, {{ Template:Math/C_RadiationConstant }}, [http://adsabs.harvard.edu/abs/1968psen.book.....C D. D. Clayton (1968)] states that, "&hellip; the entropy per gram of the photon [field]" is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>s_\mathrm{rad}</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{4a_\mathrm{rad}T^3}{3\rho} \, ;
</math>
  </td>
</tr>
</table>
[http://adsabs.harvard.edu/abs/1968psen.book.....C Clayton (1968)], Chapter 2 (p. 121), Eq. (2-136)
</div>
according to [[Appendix/References#ST83|[<b><font color="red">ST83</font></b>]]], "&hellip; the photon entropy per baryon" is,
<table border="0" align="center" cellpadding="5">
<tr>
  <td align="right">
<math>s_r = \frac{4}{3} \frac{a_\mathrm{rad}T^3}{n}</math>
  </td>
  <td align="center">=</td>
  <td align="left">
<math>\frac{4m_H a_\mathrm{rad} T^3}{3\rho} \, ,</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[[Appendix/References#ST83|[<b><font color="red">ST83</font></b>]]], &sect;17.2, Eq. (17.2.2) &amp;  &sect;17.3, Eq. (17.3.7)
  </td>
</tr>
</table>
where, <span title="Hydrogen mass"><math>m_H</math></span> is the mass of a hydrogen atom, and <math>n = \rho/m_H</math> is the baryon number density; and, from [[Appendix/References#Shu92|[<b><font color="red">Shu92</font></b>]]] we find that "&hellip; the entropy of blackbody radiation per unit mass of fluid,"
<table border="0" align="center" cellpadding="5">
<tr>
  <td align="right">
<math>s_\mathrm{rad}</math>
  </td>
  <td align="center">=</td>
  <td align="left">
<math>\frac{4a_\mathrm{rad} T^3}{3\rho} \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[[Appendix/References#Shu92|[<b><font color="red">Shu92</font></b>]]], Vol. I, Chapter 9 (p. 82), Eq. (9.22)
  </td>
</tr>
</table>
See also our discussions of &hellip;
<ul>
  <li>[[Appendix/Ramblings/RadiationHydro#Optically_Thick_Regime|Optically thick regimes]] in the context of radiation-hydrodynamics.</li>
  <li>[[PGE/FirstLawOfThermodynamics#Nonadiabatic_Environments|Nonadiabatic environments]] within the context of the 1<sup>st</sup> Law of Thermodynamics.</li>
</ul>




{{ SGFfooter }}
{{ SGFfooter }}

Latest revision as of 12:03, 1 May 2022

Rotating, Supermassive Stars

Bond, Arnett, & Carr
(1984)

Here we draw upon the work of 📚 J. R. Bond, W. D. Arnett, & B. J. Carr (1984, ApJ, Vol. 280, pp. 825 - 847) — hereafter BAC84 — who were among the first to seriously address the question of the fate of very massive (stellar) objects.  

Equation of State

Our discussion of the equation of state (EOS) that was used by BAC84 draws on the terminology that has already been adopted in our introductory discussion of supplemental relations and closely parallels our review of the properties of the envelope that 📚 E. A. Milne (1930, MNRAS, Vol. 91, pp. 4 - 55) used to construct a bipolytropic sphere.

Expression for Total Pressure

Ignoring the component due to a degenerate electron gas, Pdeg, the total gas pressure can be expressed as the sum of two separate components: a component of ideal gas pressure, and a component of radiation pressure. That is, in BAC84 the total pressure is given by the expression,

P

=

Pgas+Prad,

where,

Ideal Gas Radiation

Pgas=μ¯ρT

Prad=13aradT4

Now, BAC84 define the rest-mass density in terms of the mean baryon mass, mB, via the expression, ρ=mBn, and write (see their equation 1),

P

=

YTnkT+13aradT4.

In converting from our notation to theirs we conclude, therefore, that,

μ¯(mBn)T

=

YTnkT

YT

=

kmBμ¯.

Ratio of Radiation Pressure to Gas Pressure

Following 📚 Milne (1930), we have defined the parameter, β, as the ratio of gas pressure to total pressure. That is, in the context of BAC84, we have,

βPgasP,

in which case, also,

PradP=1β         and         PgasPrad=β1β.

Using a different notation, BAC84 (see their equation 5) define σ as the ratio of the radiation pressure to the gas pressure. Therefore, in converting from our notation to theirs we have,

σ=1βββ=(1+σ)1,

as well as,

σ=PradPgas=aradT33μ¯(mB)n=aradT33YTnk,

which is precisely the definition provided in equation (5) of BAC84.

Expression for Adiabatic Exponent

Three Equivalent Expressions

Eq. (24) from 📚 Eddington (1918)

Γ143

=

(γ43)(43β)1+12(γ1)(1β)/β


Eq. (131) from Chapter II of [C67]
Eq. (74) from §3.4 of [T78]

Γ1

=

β+(γ1)(43β)2β+12(γ1)(1β)


Derived below … noting that β=(1+σ)1

Γ143

=

(3γ4)(1+4σ)3(1+σ)[1+12(γ1)σ]


For any value of the ratio of specific heats

From equation (2) of 📚 P. Ledoux & C. L. Pekeris (1941, ApJ, Vol. 94, pp. 124 - 135) — see, for example, our brief summary of this work — or, equally well, from equation (131) in Chapter II of [C67], we see that when the total pressure is of the form being considered here, a general expression for the adiabatic exponent,

Γ1dlnPdlnρ,

is,

Γ1

=

β+(γ1)(43β)2β+12(γ1)(1β),

where, γ is the ratio of specific heats associated with the ideal-gas component of the equation of state. Notice that β=1 represents a situation where there is no radiation pressure. In this limit the expression simplifies to,

Γ1|β=1

=

γ,

which makes sense. On the other hand, setting β=0 represents the other extreme, where there is no ideal-gas contribution to the pressure. In this case, we have,

Γ1|β=0

=

16(γ1)12(γ1)=43.

Used by BAC84

On the other hand, without derivation BAC84 state (see their equation 4) that the adiabatic exponent is,

Γ1

=

43+4σ+13(σ+1)(8σ+1).

They also point out that, in the case where a system is dominated by radiation pressure (σ1), this expression becomes,

Γ1|σ1

43+16σ.

Clearly, in the limit σ, this gives Γ14/3, which, as it should, matches the limiting value obtained from the 📚 Ledoux & Pekeris (1941) expression when β=0.

BAC84 do not explicitly state what value they used for the ratio of specific heats when deriving their expression for the adiabatic exponent. But this can be deduced by examining how their expression behaves in the limit of no radiation pressure, that is, for σ=0. In this limit, the BAC84 expression gives,

Γ1|σ=0

43+13=53.

The general BAC84 expression should therefore match the (even more) general 📚 Ledoux & Pekeris (1941) expression if we set γ=53. Let's check this out. Inserting this specific value of γ, and remembering (from above) that,

σ=1ββ,

the 📚 Ledoux & Pekeris (1941) expression for the adiabatic exponent becomes,

Γ1

=

β+23(43β)2β+8(1β)

 

=

13β[2(43β)21+8σ]+β

 

=

13β(1+8σ)[2(43β)2+3β2(1+8σ)]

 

=

13β(1+8σ)[3248β+18β2+3β2+24β2σ]

 

=

13β(1+8σ)[3248β+β2(21+24σ)]

Γ143

=

13β(1+8σ)[3248β+β2(21+24σ)4β(1+8σ)]

 

=

13β(1+8σ)[324β(13+8σ)+3β2(7+8σ)]

 

=

13β(1+8σ)[324β(8+8σ)20β+3β2(8+8σ)3β2]

 

=

13β(1+8σ)[323220β+24β3β2]

 

=

(43β)3(1+8σ)=4β33β(1+8σ)

 

=

4(1+σ)33(1+σ)(1+8σ)

 

=

1+4σ3(1+σ)(1+8σ).

Or, even more generally, we can show that,

Γ143

=

(3γ4)(1+4σ)3(1+σ)[1+12(γ1)σ].



Mass Normalization

Now, according to BAC84 (see their equation 8), when the total pressure is written in polytropic form — specifically, if we set,

P=Kρ(1+1/np)

— the mass-scaling for relativistic configurations will depend on G, c, K, and np via the expression,

Mu=Knp/2G3/2c3np=(KG)3/2(Kc2)(np3)/2.


Polytropic Index Equals 3

Referencing our separate discussion of Milne's (1930) work, when np=3, the polytropic constant is related to the relevant set of physical parameters via the relation,

K3

=

[(μ¯)4(1ββ4)3arad]1/3.

Adopting the BAC84 terminology, this means that,

(K3G)3

=

(μ¯)4[1ββ4]3G3arad

 

=

(kYTmB)4[σ4(1+σ1)3]3G3arad

Mnorm(K3G)3/2

=

(1+σ1)3/2(kYTmB)2(3G3arad)1/2σ2

 

(1+32σ)(kYTmB)2(3G3arad)1/2σ2.

When radiation pressure significantly dominates over gas pressure — that is, in the limit σ1 — the leading factor is approximately unity, in which case we see that this expression for Mnorm exactly matches the expression for Mu,3 given by equation (10) of BAC84.

Polytropic Index Slightly Less Than 3

More generally, equating the two expressions for the total pressure and drawing (twice) on the expression for σ provided above, we have,

Kρ(1+1/np)

=

YTnkT+arad3T4

 

=

arad3(1+σ1)T4

 

=

arad3(1+σ1)[3YTnkσarad]4/3

 

=

(3arad)1/3(1+σ1)[YTnkσ]4/3.

Now, from above we have,

1+1np=Γ

43+16σ,

so the lefthand-side of this last expression can be written as,

Kρ(1+1/np)

Kρ(4/3+1/6σ)=K(mBn)4/3ρ1/6σ.

This means that, for any σ1,

K

(3arad)1/3(YTkσmB)4/3(1+σ1)ρ1/6σ.

This matches exactly expression (7) in BAC84. Again from above — and continuing to assume σ1 — we have,

1+1np43+16σ

           

1np13(1+12σ)

 

           

np3(1+12σ)13(112σ)

 

           

(np3)234σ.

Hence, when the polytropic index is slightly less than 3, the mass normalization is,

Mu

(KG)3/2(Kc2)3/4σ

 

=

[1G(3arad)1/3(YTkσmB)4/3(1+σ1)ρ1/6σ]3/2[1c2(3arad)1/3(YTkσmB)4/3(1+σ1)ρ1/6σ]3/4σ

 

=

[(3G3arad)1/2(YTkmB)2(1+σ1)3/2σ2]ρ1/4σ[1c2(3arad)1/3(YTkσmB)4/3(1+σ1)ρ1/6σ]3/4σ

 

=

[Mnorm]{1c2(3arad)1/3(YTkσmB)4/3(mBn)1/3[(1+σ1)ρ1/6σ]}3/4σ

Drawing again from the definition of σ provided above, we have,

(3arad)1/3

=

T(σYTnk)1/3,

so this last relation can be rewritten as,

Mu

Mnormf[mBc2TσYTk]3/4σfMu,3(1+32σ)[mBc2TσYTk]3/4σ,

where,

f[(1+σ1)1ρ1/6σ]3/4σ(134σ2)(nmB)1/8σ2,

which certainly is close to unity when σ1. After setting f=1, this last expression for Mu exactly matches the expression presented as equation (9) in BAC84.

Entropy of Radiation Field

Planck's Law of Black-Body Radiation

Drawing from the Wikipedia discussion of black-body radiation, Planck's law states that,

Bν(T)

=

2hν3c21ehν/kT1.

[H87], §12.1 (p. 280), Eq. (12.14)
[KW94], §5.1 (p. 30), Eq. (5.15)
[HK94], §4.1 (p. 152), Eq. (4.7)
[BLRY07], §1.6.2 (p. 23), Eq. (1.103)

Letting,

xhνkT,

and integrating over the entire frequency spectrum, we have,

0Bν(T)dν

=

2hc2(kTh)40x3dxex1=2k4h3c2(π415)T4=σSBT4π,

where [with units of mass × (time)-3 K-4],

σSB

2π515k4h3c2.

In discussions of the thermodynamic properties of (photon) radiation fields, the radiation [density] constant, arad, appears in many physical relations. It is related to the Steffan-Boltzmann constant via the simple expression,

arad=4σSBc,

and has units of energy per unit volume × K-4.

Photon Entropy

Here are expressions from the published literature that — to within an additive constant — give the entropy of the (photon) radiation field. We begin with [Clayton68], who states that, "… the entropy per gram of the photon [field]" is,

srad

=

4aradT33ρ.

[Clayton68], Chapter 2 (p. 121), Eq. (2-136)
[Shu92], Vol. I, Chapter 9 (p. 82), Eq. (9.22)

Providing the same expression, [Shu92] states that it is a measure of "… the entropy of blackbody radiation per unit mass of fluid." From the group of terms on the right-hand side of this expression, we conclude that srad has units of specific energy per Kelvin. This is consistent with the units that are traditionally associated with entropy; see, for example, our separate discussion of the dimensions of various thermodynamic variables.

According to [ST83], "… the photon entropy per baryon" is,

sr=43aradT3n

=

4mHaradT33ρ,

[ST83], §17.2, Eq. (17.2.2) & §17.3, Eq. (17.3.7)

where, mH is the mass of a hydrogen atom, and n=ρ/mH is the baryon number density. We conclude, therefore, that srad=sr/mH.

We have also found it useful to examine the expression for the entropy of a radiation field used by 📚 G. M. Fuller, S. E. Woosley, & T. A. Weaver (1986, ApJ, Vol. 307, pp. 675 - 686) — hereafter FWW86 — primarily because the authors provide, for comparison, a numerical evaluation of the expression's leading coefficient.

In terms of the variables, T and ρ, and the four physical constants, h, c, k, NA, FWW86 state that the "… entropy per baryon … for photons is,"

sγ

=

4π245[kTc]31ρNA.

FWW86 §III (p. 678), Eq. (11)

From the numerical values of the physical constants — which can be obtained by scrolling your cursor over each representative letter in our text (see also our accompanying table of physical constants) — and acknowledging that h/(2π), we deduce that, to six significant digits,

hc

=

1.986446×1016ergcm=1.239841×1010MeVcm

sγ

=

[(2π)545NA(hc)3](kT)3ρ=(4.610053×1025erg3cm3)(kT)3ρ

 

=

(1.895998×108MeV3cm3)(kT)3ρ.

This is consistent with the statement in FWW86 that, when energy is measured in MeV, the leading coefficient is, 1.905×108.

Notice that, because the quantity, kT, has units of energy, the dimension of sγ is inverse mass. In contrast to this, as has been highlighted in our separate discussion of the physical units of various thermodynamic variables, we expect the units of specific entropy (srad) to be specific energy per Kelvin. We suspect that, for convenience, FWW86 have dropped a leading factor of k on the RHS of their expression for sγ and that it is appropriate to draw from their presentation that the specific entropy of the radiation field is,

srad

=

ksγ.


Note that in the BAC84 publication, the Boltzmann constant, k, does not appear in this expression because "T is the temperature in energy units (Boltzmann constant = 1)."
Note that in the BAC84 publication, the Boltzmann constant, k, does not appear in this expression because "T is the temperature in energy units (Boltzmann constant = 1)."

Similarly, from BAC84 we find that "… the photon entropy [is],"

sγ

=

43[π215(c)3](kT)3nB,

BAC84, §2b (p. 827), Eq. (5)

where nB is the "baryon density."


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |