Appendix/Ramblings/PPToriPt1A

From jetwiki
Jump to navigation Jump to search

Stability Analyses of PP Tori

[Comment by J. E. Tohline on 24 May 2016]   This chapter contains a set of technical notes and accompanying discussion that I put together several months ago as I was trying to gain a foundational understanding of the results of a large study of instabilities in self-gravitating tori published by the Imamura & Hadley collaboration. I have come to appreciate that some of the logic and interpretation of published results that are presented, below, has serious flaws. Therefore, anyone reading this should be quite cautious in deciding what subsections provide useful insight. I have written a separate chapter titled, "Characteristics of Unstable Eigenvectors in Self-Gravitating Tori," that contains a much more trustworthy analysis of this very interesting problem.


Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


As has been summarized in an accompanying chapter — also see our related detailed notes — we have been trying to understand why unstable nonaxisymmetric eigenvectors have the shapes that they do in rotating toroidal configurations. For any azimuthal mode, m, we are referring both to the radial dependence of the distortion amplitude, fm(ϖ), and the radial dependence of the phase function, ϕmax(ϖ) — the latter is what the Imamura and Hadley collaboration refer to as a "constant phase locus." Some old videos showing the development over time of various self-gravitating "constant phase loci" can be found here; these videos supplement the published work of Woodward, Tohline & Hachisu (1994).


Here, we focus specifically on instabilities that arise in so-called (non-self-gravitating) Papaloizou-Pringle tori and will draw heavily from three publications:

PP III

Figure 2 extracted without modification from p. 274 of J. C. B. Papaloizou & J. E. Pringle (1987)

"The Dynamical Stability of Differentially Rotating Discs.   III"

MNRAS, vol. 225, pp. 267-283 © The Royal Astronomical Society

Figure 2 from PP III
Figure 2 from PP III

Blaes (1985)

Equilibrium Configuration

In our separate discussion of PP84, we showed that the equilibrium structure of a PP-torus is defined by the enthalpy distribution,

H=GMptϖ0[(χ2+ζ2)1/212χ2CB'].

Normalizing this expression by the enthalpy at the "center" — i.e., at the pressure maximum — of the torus which, as we have already shown, is

H0=GMpt2ϖ0[12CB']

gives,

[12CB'](HH0)=2(χ2+ζ2)1/2χ21+[12CB'].

Now, in our review of Kojima's (1986) work, we showed that the square of the Mach number at the "center" of the torus is,

𝔐02(vφ|0)2(cs|0)2

=

2(n+1)γ[1χ1]2

 

=

2n[12CB']1

[12CB']

=

2n𝔐02,

where, in obtaining this last expression we have related the adiabatic exponent to the polytropic index via the relation, γ=(n+1)/n. Instead of specifying the system's Mach number, Blaes (1985) defines the dimensionless parameter,

β2

2n𝔐02.

Implementing this parameter swap, the equilibrium expression becomes,

β2(HH0)=2(χ2+ζ2)1/2χ21+β2,

or,

HH0

=

11β2[χ22(χ2+ζ2)1/2+1].

Looking at Figure 1 of Blaes85 — see also the coordinate definitions given in his equation (2.1) — I conclude that,

χ=1xcosθ       and         ζ=xsinθ.

Hence,

HH0

=

11β2{[1xcosθ]22[(1xcosθ)2+x2sin2θ]1/2+1}

 

=

11β2{[1xcosθ]22[(12xcosθ+x2cos2θ)+x2(1cos2θ)]1/2+1}

 

=

11β2[(1xcosθ)22(12xcosθ+x2)1/2+1].

This matches equation (2.2) of Blaes85, if we acknowledge that Blaes uses f — instead of the parameter notation, ΘH, found in our discussion of equilibrium polytropic configurations — to denote the normalized enthalpy; that is,

fBlaes85=ΘHHH0.

This expression for the enthalpy throughout a Papaloizou-Pringle torus is valid for tori of arbitrary thickness (0<β<1). When considering only slim tori, Blaes (1985) points out that this expression can be written in terms of the following power series in x (see his equation 1.3):

ΘH

=

11β2[x2+x3(3cosθcos3θ)+𝒪(x4)].

Blaes then adopts a related parameter that is constant on isobaric surfaces, namely,

η21ΘH,

which is unity at the surface of the torus and which goes to zero at the cross-sectional center of the torus. Notice that η tracks the "radial" coordinate that measures the distance from the center of the torus; in particular, keeping only the leading-order term in x, there is a simple linear relationship between η and x, namely,

η

=

[1ΘH]1/2xβ.

Cubic Equation Solution

For later use, let's invert the cubic relation to obtain a more broadly applicable x(η) function. Because we are only interested in radial profiles in the equatorial plane — that is, only for the values of θ=0 or θ=π — the relation to be inverted is,

x2±2x3

=

(βη)2

x3±12x212(βη)2

=

0.


Table 1:  Example Parameter Values

determined by iterative solution for β=110
η Γ2=54β2η2 Inner solution (θ=0)

[Superior sign in cubic eq.]
Outer solution (θ=π)

[Inferior sign in cubic eq.]
(xrootβ) 6(S+T) (xrootβ) 6(S+T)
0.25 0.03375 0.244112 1.14647 0.256675 -0.84600
1.0 0.54 0.91909 1.55145 1.1378 -0.31732

Here, xroot has been determined via a brute-force, iterative technique.


Following Wolfram's discussion of the cubic formula, we should view this expression as a specific case of the general formula,

x3+a2x2+a1x+a0=0,

in which case, as is detailed in equations (54) - (56) of Wolfram's discussion of the cubic formula, the three roots of any cubic equation are:

x1

=

13a2+(S+T),

x2

=

13a212(S+T)+12i3(ST),

x3

=

13a212(S+T)12i3(ST),

where,

S

[R+D]1/3,

T

[RD]1/3,

D

Q3+R2,

Q

3a1a2232,

R

32a2a133a02a23233.

Outer [inferior sign] Solution

Focusing, first, on the inferior sign convention, which corresponds to the "outer" solution (θ=π), we see that the coefficients that lead to our specific cubic equation are:

a2

=

12,

a1

=

0,

a0

=

12(βη)2.

Applying Wolfram's definitions of the Q and R parameters to our particular problem gives,

Q

3a1a2232=(a23)2=12232;

R

32a2a133a02a23233=1233[332(βη)2+122]

 

12333[1233(βη)2].

Defining the parameter,

Γ2

233(βη)2,

we therefore have,

(23)6D

=

(1Γ2)21,

(23)3S3

(23)3R+(23)6D

 

(1Γ2)+(1Γ2)21

 

(1Γ2)+i1(1Γ2)2;

(23)3T3

(1Γ2)i1(1Γ2)2.

ASIDE:  The cube root of an imaginary number …

3

=

A±i1A2

 

=

reiθ,

where,

r

=

(A2+1A2)1/2=1,

and,

θ

=

±tan1(1A2A)=±cos1A.

Now, according to this online resource, the three roots (j=0,1,2) of 3 are,

j=r1/3ei(θ+2jπ)/3),

which, for our specific problem gives,

j

=

eiθ±/3ei(2jπ/3),

where the subscript on θ refers to the ± in our original expression for .


In our particular case, after associating A(1Γ2), we can write,

23(S+T)

=

[(1Γ2)+i1(1Γ2)2]1/3+[(1Γ2)i1(1Γ2)2]1/3

 

=

eiθ+/3ei(2jπ/3)+eiθ/3ei(2jπ/3)

 

=

ei(2jπ/3){ei[cos1(1Γ2)]/3+ei[cos1(1Γ2)]/3}

 

=

ei(2jπ/3){cos[13cos1(1Γ2)]+isin[13cos1(1Γ2)]

 

 

+cos[13cos1(1Γ2)]isin[13cos1(1Γ2)]}

 

=

2ei(2jπ/3)cos[13cos1(1Γ2)].

Similarly, we can write,

23(ST)

=

[(1Γ2)+i1(1Γ2)2]1/3[(1Γ2)i1(1Γ2)2]1/3

 

=

eiθ+/3ei(2jπ/3)eiθ/3ei(2jπ/3)

 

=

ei(2jπ/3){ei[cos1(1Γ2)]/3ei[cos1(1Γ2)]/3}

 

=

ei(2jπ/3){cos[13cos1(1Γ2)]+isin[13cos1(1Γ2)]

 

 

cos[13cos1(1Γ2)]+isin[13cos1(1Γ2)]}

 

=

2iei(2jπ/3)sin[13cos1(1Γ2)].

Focusing specifically on the "j=0" root, and setting a2=12, we therefore have,

6x11

=

6(S+T)

 

=

2cos[13cos1(1Γ2)];

6x21

=

12{2cos[13cos1(1Γ2)]i32isin[13cos1(1Γ2)]}

 

=

2{12cos[13cos1(1Γ2)]+32sin[13cos1(1Γ2)]}

 

=

2{cos[13cos1(1Γ2)+2π3]};

6x31

=

12{2cos[13cos1(1Γ2)]+i32isin[13cos1(1Γ2)]}

 

=

2{12cos[13cos1(1Γ2)]32sin[13cos1(1Γ2)]}

 

=

2{cos[13cos1(1Γ2)2π3]}.


Table 1:  Analytically Evaluated Roots

determined for β=110
η Γ2=54β2η2 Inner solution (θ=0)

[Superior sign in cubic eq.]
Outer solution (θ=π)

[Inferior sign in cubic eq.]
x1/β x2/β x3/β x1/β x2/β x3/β
0.25 0.03375 -4.98744 0.24411 -0.25667 4.98744 -0.24411 0.25667
1.0 0.54 -4.78128 0.91909 -1.1378 4.78128 -0.91909 1.1378
  CONFIRMATION: In all cases,

x2+2x3=(βη)2
CONFIRMATION: In all cases,

x22x3=(βη)2


Inner [superior sign] Solution

Next, examing the superior sign convention, which corresponds to the "inner" solution (θ=0), we see that the coefficients that lead to our specific cubic equation are:

a2

=

12,

a1

=

0,

a0

=

12(βη)2.

Following the same set of steps that were followed in determining the "outer" solution, here we find: Q remains the same; R has the same magnitude, but changes sign; and, hence, D remains the same. We therefore have,

(23)3S3

=

(1Γ2)+i1(1Γ2)2;

(23)3T3

=

(1Γ2)i1(1Γ2)2,

which leads to the following expressions for the three "inner" roots:

6x1+1

=

2cos[13cos1(1Γ2)];

6x2+1

=

2{cos[13cos1(1Γ2)+2π3]};

6x3+1

=

2{cos[13cos1(1Γ2)2π3]}.

Analytically Prescribed Eigenvector

Our Notation

As is explicitly defined in Figure 1 of our accompanying detailed notes, we have chosen to represent the spatial structure of an eigenfunction in the equatorial-plane of toroidal-like configurations via the expression,

[δρρ0]spatial

=

{fm(ϖ)eimϕm}.

In general, we should assume that the function that delineates the radial dependence of the eigenfunction has both a real and an imaginary component, that is, we should assume that,

fm(ϖ)

=

𝒜(ϖ)+i(ϖ),

in which case the square of the modulus of the function is,

|fm|2fmfm*

=

𝒜2+2.

We can rewrite this complex function in the form,

fm(ϖ)

=

|fm|ei[α(ϖ)+π/2],

if the angle, α(ϖ) is defined such that,

sinα=𝒜𝒜2+2

        and        

cosα=𝒜2+2

α

tan1(𝒜)=tan1[Re(fm)Im(fm)].

Hence, the spatial structure of the eigenfunction can be rewritten as,

[δρρ0]spatial

=

|fm(ϖ)|ei[α(ϖ)+π/2+mϕm].

From this representation we can see that, at each radial location, ϖ, the phase angle(s) at which the fractional perturbation exhibits its maximum amplitude, |fm|, is identified by setting the exponent of the exponential to zero. That is,

ϕm=ϕmax(ϖ)

1m[α(ϖ)+π2]=1m{tan1[Re(fm)Im(fm)]+π2}.

An equatorial-plane plot of ϕmax(ϖ) should produce the "constant phase locus" referenced, for example, in recent papers from the Imamura & Hadley collaboration.


General Formulation

From my initial focused reading of the analysis presented by Blaes (1985), I conclude that, in the infinitely slender torus case, unstable modes in PP tori exhibit eigenvectors of the form,

δWW0[W(η,θ)C1]eimΩptey2(Ω0t)

=

{fm(η,θ)ei[mϕm+kθ]},

where we have written the perturbation amplitude in a manner that conforms with the notation that we have used in Figure 1 of a related, but more general discussion. As is summarized in §1.3 of Blaes (1985), for "thick" (but, actually, still quite thin) tori, "exactly one exponentially growing mode exists for each value of the azimuthal wavenumber m," and its complex amplitude takes the following form (see his equation 1.10):

fm(η,θ)

=

β2m2[2η2cos2θ3η24(n+1)(4n+1)4(n+1)2±4i(32n+2)1/2ηcosθ]+𝒪(β3).

Aside from an arbitrary leading scale factor, we should therefore find that the amplitude (modulus) of the enthalpy perturbation is,

|δWW0|

=

[Re(fm)]2+[Im(fm)]2;

and the associated phase function is,

mϕmax(ϖ)

=

{tan1[Re(fm)Im(fm)]+π2+kθ}.

Now, keeping in mind that, for the time being, we are only interested in examining the shape of the unstable eigenvector in the equatorial plane of the torus, we can set,

cosθ±1.

Hence, we have,

1β4m4|δWW0|2

=

[2η23η24(n+1)(4n+1)4(n+1)2]2+16[(32n+2)1/2η]2

 

=

1[22(n+1)2]2[23(n+1)2η23(n+1)η2(4n+1)]2+233η2(n+1)

 

=

1[22(n+1)2]2[(4n+1)(n+1)[23(n+1)3]η2]2+233η2(n+1)

[2(n+1)βm]4|δWW0|2

=

[(4n+1)(n+1)[23(n+1)3]η2]2+273(n+1)3η2.

Also, keeping in mind that, because of the cosθ factor, the sign on the imaginary term flips its sign when switching from the "inner" region to the "outer" region of the torus,

 

mϕmax

=

{tan1[(4n+1)(n+1)[23(n+1)3]η227/231/2(n+1)3/2η]+π2}

        over        

inner (θ=0) region of the torus;

while
 

mϕmax

=

{tan1[(4n+1)(n+1)[23(n+1)3]η227/231/2(n+1)3/2η}+3π2}

        over        

outer (θ=π) region of torus.

Incompressible Slim Tori

If we specifically consider geometrically slim, incompressible tori — that is, if we set the polytropic index, n=0 — to lowest order the eigenfunction derived by Blaes (1985) takes the form,

fm(η,θ)

=

β2m2[2η2cos2θ3η2414±4i(32)1/2ηcosθ]+𝒪(β3)0.

Check Validity of Blaes85 Eigenvector

Step 1

Equation (2.6) of Blaes85 states that,

β2η2=[x2+x3(3cosθcos3θ)]

               

β2(1η2)=[β2x2x3(3cosθcos3θ)].

This means that,

η2x

=

1β2[2x+3x2(3cosθcos3θ)];

and,

η2θ

=

x3β2[3sinθ+3sinθcos2θ]

 

=

3x3sinθβ2[cos2θ1].

Furthermore,

ηx

=

12β[x2+x3(3cosθcos3θ)]1/2[2x+3x2(3cosθcos3θ)];

and,

ηθ

=

12β[x2+x3(3cosθcos3θ)]1/2[3sinθ+3sinθcos2θ].

Step 2

Equation (4.14) of Blaes85 states that,

ν+m

=

±im[32(n+1)]1/2β;

and equation (4.13) of Blaes85 states that,

δWA00

=

1+β2m2[2η2cos2θ3η24(n+1)(4n+1)4(n+1)2±4i(32n+2)1/2ηcosθ]

1m2[δWA001]

=

β2{(4n+1)4(n+1)2+η2[2cos2θ34(n+1)]±i(233n+1)1/2ηcosθ}

 

=

β222(n+1)2{(4n+1)+η2[23(n+1)2cos2θ3(n+1)]±i[273(n+1)3]1/2ηcosθ}

Λ22(n+1)2m2[δWA001]

=

(4n+1)β2+[23(n+1)2cos2θ3(n+1)][x2+x3(3cosθcos3θ)]

 

 

±iβ[273(n+1)3]1/2[x2cos2θ+x3(3cos3θcos5θ)]1/2

 

=

(4n+1)β2+(n+1)x2[23(n+1)cos2θ3][1+xb]±iβ[273(n+1)3]1/2xcosθ[1+xb]1/2

Through a separate white-board derivation I have obtained …

Λ

22(n+1)2m2[δWA001]

 

=

(4n+1)β2+(βη)2(n+1)[23(n+1)cos2θ3]±iβcosθ[273(n+1)3]1/2(βη),

where,

(βη)2

=

x2(1+xb),

b

3cosθcos3θ.

Note that, differentiating the left-hand-side with respect to either coordinate (x or θ) gives,

Λxi

=

22(n+1)2m2xi(δWA00)

xi(δWA00)

=

[m2(n+1)]2Λxi.


Given that ν has both real and imaginary parts, presumably,

ν2νν*

=

{m±im[32(n+1)]1/2β}{mim[32(n+1)]1/2β}

 

=

m2+m2[32(n+1)]β2.

For later reference, let's take the relevant partial derivatives of the function, Λ(x,θ). Adopting the shorthand notation,

b(3cosθcos3θ),

we have,

Λx

=

[23(n+1)2cos2θ3(n+1)]x{[x2+x3b]}

 

 

±iβ[273(n+1)3]1/2cosθx{[x2+x3b]1/2}

 

=

[23(n+1)2cos2θ3(n+1)][2x+3x2b]

 

 

±iβ[253(n+1)3]1/2cosθ[1+xb]1/2[2+3xb]

Through a separate white-board derivation I have obtained …

Λx

=

(n+1)[23(n+1)cos2θ3]x(2+3xb)±iβcosθ[253(n+1)3]1/2x(2+3xb)(βη),

which is the same.


2Λx2

=

[23(n+1)2cos2θ3(n+1)]x[2x+3x2b]

 

 

±iβ[253(n+1)3]1/2cosθx{[1+xb]1/2[2+3xb]}

 

=

[23(n+1)2cos2θ3(n+1)][2+6xb]

 

 

±iβ[253(n+1)3]1/2cosθ{b2[1+xb]3/2[2+3xb]+[1+xb]1/2[3b]}

 

=

2[23(n+1)2cos2θ3(n+1)][1+3xb]

 

 

±iβ[253(n+1)3]1/2cosθ{[2b+3xb2]+[6b+6xb2]}12(1+xb)3/2

 

=

2[23(n+1)2cos2θ3(n+1)][1+3xb]

 

 

±iβ[233(n+1)3]1/2cosθb[1+xb]3/2[4+3xb]


Through a separate white-board derivation I have obtained …

2Λx2

=

2(n+1)[23(n+1)cos2θ3](1+3xb)±iβcosθ[233(n+1)3]1/2[b(4+3xb)(1+xb)3/2],

which is the same.


Λθ

=

θ{[23(n+1)2cos2θ3(n+1)][x2+x3(3cosθcos3θ)]}

 

 

±iθ{β[273(n+1)3]1/2[x2cos2θ+x3(3cos3θcos5θ)]1/2}

 

=

[23(n+1)2cos2θ3(n+1)]x3[sinθ(3+3cos2θ)]+[x2+x3(3cosθcos3θ)][24(n+1)2sinθcosθ]

 

 

±iβ[253(n+1)3]1/2[x2cos2θ+x3(3cos3θcos5θ)]1/2(sinθ)[2x2cosθ+x3(9cos2θ5cos4θ)]

 

=

3x3sin3θ[23(n+1)2cos2θ3(n+1)]24(n+1)2x2sinθcosθ[1+x(3cosθcos3θ)]

 

 

±iβ(1)[253(n+1)3]1/2[1+x(3cosθcos3θ)]1/2xsinθ[2+x(9cosθ5cos3θ)]

 

=

3x3sin3θ[23(n+1)2cos2θ3(n+1)]24(n+1)2x2sinθcosθ[1+xb]

 

 

±iβ(1)[253(n+1)3]1/2[1+xb]1/2xsinθ[2+x(9cosθ5cos3θ)]


Through a separate white-board derivation I have obtained …

Λθ

=

9(n+1)x3sin3θ233(n+1)2x3sin3θcos2θ24(n+1)2(βη)2sinθcosθ

 

 

±i(1)β[273(n+1)3]1/2{(βη)sinθ+3x32[sin3θcosθ(βη)]}

 

=

(n+1)sinθ{24(n+1)(βη)2cosθ+3x3sin2θ[323(n+1)cos2θ]}

 

 

±i(1)βsinθ[273(n+1)3(βη)2]1/2{1+3x32[sin2θcosθ(βη)2]},

which is the same.


2Λθ2

=

3x3θ{sin3θ[23(n+1)2cos2θ3(n+1)]}24(n+1)2x2θ{sinθcosθ[1+x(3cosθcos3θ)]}

 

 

±iβ(1)x[253(n+1)3]1/2θ{sinθ[2+x(9cosθ5cos3θ)][1+x(3cosθcos3θ)]1/2}

 

=

3x3{3sin2θcosθ[23(n+1)2cos2θ3(n+1)]sin3θ[23(n+1)22sinθcosθ]}

 

 

24(n+1)2x2{(cos2θsin2θ)[1+x(3cosθcos3θ)]3xsin4θcosθ}

 

 

±iβ(1)x[253(n+1)3]1/2{cosθ[2+x(9cosθ5cos3θ)][1+x(3cosθcos3θ)]1/2

 

 

3xsin2θ[1+x(3cosθcos3θ)]1/2(35cos2θ)

 

 

+32xsin4θ[2+x(9cosθ5cos3θ)][1+x(3cosθcos3θ)]3/2}

 

=

3x3{3sin2θcosθ[23(n+1)2cos2θ3(n+1)]sin3θ[23(n+1)22sinθcosθ]}

 

 

24(n+1)2x2{(12sin2θ)+x(3cosθcos3θ6sin2θcosθ+2sin2θcos3θ3sin4θcosθ)}

 

 

±iβ(1)x[253(n+1)3]1/2[1+xb]3/2{cosθ[2+x(9cosθ5cos3θ)][1+xb]

 

 

3xsin2θ[1+xb](35cos2θ)+32xsin4θ[2+x(9cosθ5cos3θ)]}

 

=

24(n+1)2x2(12sin2θ)x3{[2332(n+1)2sin2θcos3θ33(n+1)sin2θcosθ]243(n+1)2sin4θcosθ

 

 

+24(n+1)2b+24(n+1)2(6sin2θcosθ+2sin2θcos3θ3sin4θcosθ)}

 

 

±iβ(1)x[233(n+1)3]1/2[1+xb]3/2{2cosθ[2+x(15cosθ7cos3θ)+x2b(9cosθ5cos3θ)]

 

 

6xsin2θ(1+xb)(35cos2θ)+3xsin4θ[2+x(9cosθ5cos3θ)]}


Through a separate white-board derivation I have obtained …

2Λθ2

=

x2{24(n+1)2(sin2θcos2θ)}

 

 

+x3{243(n+1)2cos3θ+24(n+1)2cos5θ+32(n+1)(16n+19)sin2θcosθ2323(n+1)2sin2θcos3θ}

 

 

±i(1)β[273(n+1)3]1/2{(βη)cosθ+3x3sin2θ2(βη)(5cos2θ2)+32x6sin6θcosθ22(βη)3}.

Step 3

From our accompanying discussion of the Blaes85 derivation, we expect the following equality to hold (see his equations 4.1 and 4.2):

L^(δW)

=

2n(1ΘH)(Mν2+Nν)(δW),

where,

L^(δW)

ΘHx22(δW)x2+ΘH2(δW)θ2+{ΘHx[12xcosθ1xcosθ]+nx2ΘHx}(δW)x

 

 

+[ΘHxsinθ(1xcosθ)+nΘHθ](δW)θ+[2nx2m2β2(1xcosθ)4m2x2ΘH(1xcosθ)2]δW,

M

x2(1ΘH)β2,

N

2mx2(1ΘH)β2(1xcosθ)2.

Immediately evaluating the right-hand-side (RHS) of the equality, we have,

[2(n+1)m]2RHSA00

=

2n(1ΘH)(Mν2+Nν)[2(n+1)m]2δWA00

 

=

2nx2β2[ν2+2mν(1xcosθ)2][2(n+1)m]2δWA00

 

=

2nx2β2[ν2+2mν(1xcosθ)2]{Λ+[2(n+1)m]2}.

And the similarly modified LHS is:

[2(n+1)m]2LHSA00

=

ΘHx22Λx2+ΘH2Λθ2+{ΘHx[12xcosθ1xcosθ]+nx2ΘHx}Λx

 

 

+[ΘHxsinθ(1xcosθ)+nΘHθ]Λθ+[2nx2m2β2(1xcosθ)4m2x2ΘH(1xcosθ)2][2(n+1)m]2δWA00

 

=

(1η2)x22Λx2+(1η2)2Λθ2+{(1η2)x[12xcosθ1xcosθ]+nx2(1η2)x}Λx

 

 

+[(1η2)xsinθ(1xcosθ)+n(1η2)θ]Λθ+[2nx2m2β2(1xcosθ)4m2x2(1η2)(1xcosθ)2]{Λ+[2(n+1)m]2}

 

=

(1η2)x22Λx2+(1η2)2Λθ2+{(1η2)x[12xcosθ1xcosθ]nx2η2x}Λx

 

 

+[(1η2)xsinθ(1xcosθ)nη2θ]Λθ+[2nx2m2β2(1xcosθ)4m2x2(1η2)(1xcosθ)2]{Λ+[2(n+1)m]2}

Now multiply both sides by …

β2m2(1xcosθ)4.


We have,

m2RHSβ2(1xcosθ)4[2(n+1)]2RHSA00

=

2nm2x2(1xcosθ)4[ν2+2mν(1xcosθ)2]{Λ+[2(n+1)m]2}

 

=

2nx2(1xcosθ)2[(1xcosθ)2ν2+(2mν)]{m2Λ+[2(n+1)]2}

 

=

2nx2(1xcosθ)2{m2Λ+[2(n+1)]2}{m2(1xcosθ)2[1+3β22(n+1)]+2m2[1±i[3β22(n+1)]1/2]}

 

=

nm2x2(n+1)(1xcosθ)2{m2Λ+[2(n+1)]2}{(1xcosθ)2[2(n+1)+3β2]

 

 

4(n+1)±i[233(n+1)β2]1/2}.

And,

m2LHSβ2(1xcosθ)4[2(n+1)]2LHSA00

=

β2m2(1xcosθ)4(1η2)x22Λx2+β2m2(1xcosθ)4(1η2)2Λθ2

 

 

+β2m2(1xcosθ)3[(1η2)x(12xcosθ)nx2(1xcosθ)η2x]Λx

 

 

+β2m2(1xcosθ)3[(1η2)xsinθn(1xcosθ)η2θ]Λθ

 

 

+m2[2nx2(1xcosθ)2β2x2(1η2)]{m2Λ+[2(n+1)]2}

 

=

m2(1xcosθ)4[β2x2x3(3cosθcos3θ)]x22Λx2+m2(1xcosθ)4[β2x2x3(3cosθcos3θ)]2Λθ2

 

 

+m2(1xcosθ)3{[β2x2x3(3cosθcos3θ)]x(12xcosθ)nx2(1xcosθ)[2x+3x2(3cosθcos3θ)]}Λx

 

 

+m2(1xcosθ)3{[β2x2x3(3cosθcos3θ)]xsinθ3n(1xcosθ)(cos2θ1)x3sinθ}Λθ

 

 

+m2{2nx2(1xcosθ)2x2[β2x2x3(3cosθcos3θ)]}[m2Λ+22(n+1)2].

Step 4

Let's divide both sides by m2 and swap a couple of terms between the sides in order to group, on the right, terms with no explicit mention of Λ.

RHS

β2m2(1xcosθ)4[2(n+1)]2RHSA00±swaps

 

=

nx2(n+1)(1xcosθ)2{[2(n+1)]2}{(1xcosθ)2[2(n+1)+3β2]4(n+1)±i[233(n+1)β2]1/2}

 

 

{2nx2(1xcosθ)2x2[β2x2x3(3cosθcos3θ)]}[22(n+1)2]

RHS22(n+1)x2

=

n(1xcosθ)2{(1xcosθ)2[2(n+1)+3β2]4(n+1)±i[233(n+1)β2]1/2}

 

 

+(n+1){2n(1xcosθ)2[β2x2x3(3cosθcos3θ)]}

 

=

2n(n+1)(1xcosθ)2(n+1)[β2x2x3(3cosθcos3θ)]

 

 

+n(1xcosθ)4[2(n+1)+3β2]4n(n+1)(1xcosθ)2

 

 

±i(1xcosθ)2[233n2(n+1)β2]1/2

 

=

2n(n+1)(n+1)(1xcosθ)2[4n+β2x2x3(3cosθcos3θ)]+n(1xcosθ)4[2(n+1)+3β2]

 

 

±i(1xcosθ)2[233n2(n+1)β2]1/2.


Through a separate white-board derivation I have obtained …

RHS3

β2(1xcosθ)4{RHS1±swaps}=β2(1xcosθ)4{1A00[2(n+1)m]2RHS0±swaps}

 

=

22(n+1)2x2𝒜,

where,

𝒜

2n+(1xcosθ)2[4n(νm)β2+x2(1+xb)]+2n(1xcosθ)4(νm)2,

νm

=

1±i[32(n+1)]1/2β.

Case A:       (νm)2=νν*m2=1+3β22(n+1)

(n+1)𝒜

=

2n(n+1)+(n+1)(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n(n+1)+3nβ2]

 

 

±i(1xcosθ)2[233n2β2(n+1)]1/2.

Case B:       (νm)2=νmνm=13β22(n+1)±i(1)[23β2(n+1)]1/2

(n+1)𝒜

=

2n(n+1)+(n+1)(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n(n+1)3nβ2]

 

 

±ixcosθ(1xcosθ)2[233n2β2(n+1)]1/2.


And,

LHS

β2m2(1xcosθ)4[2(n+1)]2LHSA00swaps

 

=

(1xcosθ)4[β2x2x3(3cosθcos3θ)]x22Λx2+m2(1xcosθ)4[β2x2x3(3cosθcos3θ)]2Λθ2

 

 

+(1xcosθ)3{[β2x2x3(3cosθcos3θ)]x(12xcosθ)nx2(1xcosθ)[2x+3x2(3cosθcos3θ)]}Λx

 

 

+(1xcosθ)3{[β2x2x3(3cosθcos3θ)]xsinθ3n(1xcosθ)(cos2θ1)x3sinθ}Λθ

 

 

+{2nx2(1xcosθ)2x2[β2x2x3(3cosθcos3θ)]}[m2Λ]

 

 

+nx2(n+1)(1xcosθ)2{m2Λ}{(1xcosθ)2[2(n+1)+3β2]4(n+1)±i[233(n+1)β2]1/2}

 

=

(1xcosθ)4[β2x2x3b]{x22Λx2+m22Λθ2}

 

 

+(1xcosθ)3{x(β2x2x3b)[(12xcosθ)Λx+sinθΛθ]n(1xcosθ)x3[(2+3xb)Λx3sin3θΛθ]}

 

 

+{2n(1xcosθ)2[β2x2x3b]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}m2x2Λ

 

 

±i[233n2m4β2(n+1)]1/2x2(1xcosθ)2Λ


Through a separate white-board derivation I have obtained …

LHS3

β2(1xcosθ)4{LHS1swaps}=β2(1xcosθ)4{1A00[2(n+1)m]2LHS0swaps}

 

=

β2(1η2)(1xcosθ)3{(1xcosθ)[x22Λx2+2Λθ2]+x[(12xcosθ)Λx+sinθΛθ]}

 

 

nx3(1xcosθ)4[(2+3xb)Λx3sin3θΛθ]+m2x2Λ𝒜,

where, as above in the definition of RHS3,

𝒜

2n+(1xcosθ)2[4n(νm)β2+x2(1+xb)]+2n(1xcosθ)4(νm)2.


The remaining question is, does LHS=RHS — at least to lowest order(s) in x — after the Blaes85 expression for the eigenfunction, Λ (and its derivatives), is inserted into the LHS expression?

Step 5

Now let's evaluate the LHS terms, keeping only leading-orders in x before plugging derivatives of Λ into each term. For example,

x22Λx2+m22Λθ2

=

x2{2[23(n+1)2cos2θ3(n+1)][1+3xb0]±iβ[233(n+1)3]1/2cosθb[1+xb0]3/2[4+9xb0]}

 

 

m2{24(n+1)2x2(12sin2θ)x30[[2332(n+1)2sin2θcos3θ33(n+1)sin2θcosθ]243(n+1)2sin4θcosθ

 

 

+24(n+1)2b+24(n+1)2(6sin2θcosθ+2sin2θcos3θ3sin4θcosθ)]

 

 

±iβ(1)x[233(n+1)3]1/2[1+xb]3/2[2cosθ[2+x(15cosθ7cos3θ)+x2b0(9cosθ5cos3θ)]

 

 

6xsin2θ(1+xb0)(35cos2θ)+3xsin4θ[2+x0(9cosθ5cos3θ)]]}

 

x2[24(n+1)2cos2θ6(n+1)24m2(n+1)2(12sin2θ)]

 

 

±im2β(1)x[273(n+1)3]1/2[1+xb]3/2cosθ

 

 

±iβx2[233(n+1)3]1/2[(12cos2θ4cos4θ)m2(1+xb)3/2[2cos2θ(157cos2θ)6sin2θ(35cos2θ)+6sin4θ]]

Next,

(12xcosθ)Λx+sinθΛθ

=

(12xcosθ){[23(n+1)2cos2θ3(n+1)][2x+3x2b0]±iβ[253(n+1)3]1/2cosθ[1+xb]1/2[2+3xb0]}

 

 

+sinθ{24(n+1)2x20sinθcosθ[1+xb]3x30sin3θ[23(n+1)2cos2θ3(n+1)]

 

 

±iβ(1)[253(n+1)3]1/2[1+xb]1/2xsinθ[2+x0(9cosθ5cos3θ)]}

 

(12xcosθ)[2x(n+1)[23(n+1)cos2θ3]±iβ[273(n+1)3]1/2cosθ(1+xb)1/2]

 

 

±iβx(1)[273(n+1)3]1/2[1+xb]1/2sin2θ


Through a separate white-board derivation I have obtained …

(12xcosθ)Λx+sinθΛθ

=

x(n+1)[6+24(n+1)cos2θ]

 

 

x2(n+1)cosθ{[15+24(n+1)]cos2θ[9+237(n+1)]+233(n+1)cos4θ}

 

 

+x3(n+1){92232(1+2n)cos2θ[9+32(n+1)]cos4θ+23(n+1)cos6θ}

 

 

±iβ[253(n+1)31+x(3cosθcos3θ)]1/2{2cosθx[27cos2θ+3cos4θ]

 

 

x2cosθ[9+4cos2θcos4θ]}


Also, from above,

Λ

=

(4n+1)β2+(n+1)x20[23(n+1)cos2θ3][1+xb]±iβ[273(n+1)3]1/2xcosθ[1+xb]1/2

 

(4n+1)β2±iβ[273(n+1)3]1/2xcosθ[1+xb]1/2


Through a separate white-board derivation I have obtained …

(2+3xb)Λx3sin3θΛθ

=

x22(n+1)[23(n+1)cos2θ3]

 

 

+x2223(n+1)cosθ{[22n5]+cos2θ[24n+19]22(n+1)cos4θ}

 

 

+x332(n+1)cos2θ{33+232cos2θ[22n+5]99cos4θ+23(n+1)cos6θ}

 

 

+x3(n+1)sin4θ{33+32cos2θ[233n+27]2335(n+1)cos4θ}

 

 

±iβ[253(n+1)31+xb]1/2{4cosθ+6x(2bcosθ+sin4θ)+3x2(3b2cosθ+2bsin4θ+3sin6θcosθ)}


Taken together, then, we have,

LHS

=

(1xcosθ)4[β2x2x3b0]{x22Λx2+m22Λθ2}

 

 

+(1xcosθ)3{x(β2x20x3b0)[(12xcosθ)Λx+sinθΛθ]n(1xcosθ)x30[(2+3xb)Λx3sin3θΛθ]}

 

 

+{2n(1xcosθ)2[β2x2x30b]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}m2x2Λ

 

 

±i[233n2m4β2(n+1)]1/2x2(1xcosθ)2Λ

 

(1xcosθ)4[β2x2]{x22Λx2+m22Λθ2}

 

 

+(1xcosθ)3{x(β2)[(12xcosθ)Λx+sinθΛθ]}

 

 

+{2n(1xcosθ)2[β2x2]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}m2x2Λ

 

 

±i[233n2m4β2(n+1)]1/2x2(1xcosθ)2Λ

 

(1xcosθ)4[β2x2]{x2[24(n+1)2cos2θ6(n+1)24m2(n+1)2(12sin2θ)]

 

 

±im2β(1)x[273(n+1)3]1/2[1+xb]3/2cosθ

 

 

±iβx2[233(n+1)3]1/2[(12cos2θ4cos4θ)m2(1+xb)3/2[2cos2θ(157cos2θ)6sin2θ(35cos2θ)+6sin4θ]]}

 

 

+xβ2(1xcosθ)3{(12xcosθ)[2x(n+1)[23(n+1)cos2θ3]±iβ[273(n+1)3]1/2cosθ(1+xb)1/2]

 

 

±iβx(1)[273(n+1)3]1/2[1+xb]1/2sin2θ}

 

 

+m2x2{2n(1xcosθ)2[β2x2]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}{(4n+1)β2±iβ[273(n+1)3]1/2xcosθ[1+xb]1/2}

 

 

±i[233n2m4β2(n+1)]1/2x2(1xcosθ)2{(4n+1)β2±iβ[273(n+1)3]1/2xcosθ[1+xb]1/2}

Let's further simplify:

LHS

x2{(1xcosθ)4[β2x2][24(n+1)2cos2θ6(n+1)24m2(n+1)2(12sin2θ)]

 

 

[233n2m4β2(n+1)]1/2(1xcosθ)2β[273(n+1)3]1/2xcosθ[1+xb]1/2

 

 

+β2(1xcosθ)3(12xcosθ)[2(n+1)[23(n+1)cos2θ3]]

 

 

2n(4n+1)β2m2+(4n+1)β2m2[4n+β2x2](1xcosθ)2(4n+1)β2m2n(1xcosθ)4[2+3β2(n+1)]}

 

 

±ixβ3(1xcosθ)3(12xcosθ)[273(n+1)3]1/2cosθ(1+xb)1/2

 

 

±im2β(1)x[273(n+1)3]1/2[1+xb]3/2cosθ(1xcosθ)4[β2x2]

 

 

±iβm2x2{2n(1xcosθ)2[β2x2]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}[273(n+1)3]1/2xcosθ[1+xb]1/2

 

 

±iβx2[233(n+1)3]1/2(1xcosθ)4[β2x2][(12cos2θ4cos4θ)m2(1+xb)3/2[2cos2θ(157cos2θ)6sin2θ(35cos2θ)+6sin4θ]]

 

 

±iβx2(1)[273(n+1)3]1/2β2(1xcosθ)3[1+xb]1/2sin2θ

 

 

±ix2(1)(4n+1)β2[233n2m4β2(n+1)]1/2(1xcosθ)2

Step 6

Hence, to lowest order we want to compare the following two expressions:

RHS22(n+1)x2

2n(n+1)(n+1)(1x0cosθ)2[4n+β2x20x30(3cosθcos3θ)]+n(1x0cosθ)4[2(n+1)+3β2]

 

 

±i(1x0cosθ)2[233n2(n+1)β2]1/2

 

2n(n+1)(n+1)[4n+β2]+n[2(n+1)+3β2]±i[233n2(n+1)β2]1/2

 

3nβ2+(n+1)[2n4nβ2+2n]±i[233n2(n+1)β2]1/2

 

β2(2n1)±i[233n2(n+1)β2]1/2


Re[LHSx2]

(1x0cosθ)4[β2x20][24(n+1)2cos2θ6(n+1)24m2(n+1)2(12sin2θ)]

 

 

[233n2m4β2(n+1)]1/2(1xcosθ)2β[273(n+1)3]1/2x0cosθ[1+xb]1/2

 

 

+β2(1x0cosθ)3(12x0cosθ)[2(n+1)[23(n+1)cos2θ3]]

 

 

2n(4n+1)β2m2+(4n+1)β2m2[4n+β2x20](1x0cosθ)2(4n+1)β2m2n(1x0cosθ)4[2+3β2(n+1)]

 

β2[24(n+1)2cos2θ6(n+1)24m2(n+1)2(12sin2θ)]+β2[24(n+1)2cos2θ6(n+1)]

 

 

+β2{2n(4n+1)m2+(4n+1)m2[4n]2(4n+1)m2n}+β4{(4n+1)m2(4n+1)m2n[3(n+1)]}

 

β2[24(n+1)2cos2θ6(n+1)]+β2[24(n+1)2cos2θ6(n+1)]

 

 

+m2β2[24(n+1)2(12sin2θ)]+m2β2{2n(4n+1)+4n(4n+1)2n(4n+1)}

 

 

+(4n+1)m2β4[13n(n+1)]

 

2β2[24(n+1)2cos2θ6(n+1)]+m2β2[24(n+1)2(12cos2θ)]

 

 

+(4n+1)m2β4[13n(n+1)]

 

(1m2)25β2(n+1)2cos2θ+22(n+1)β2[4m2(n+1)3]+(4n+1)m2β4[13n(n+1)].

±Im[LHS]

x{β3(1x0cosθ)3(12x0cosθ)[273(n+1)3]1/2cosθ(1+xb0)1/2

 

 

m2β[273(n+1)3]1/2[1+xb0]3/2cosθ(1x0cosθ)4[β2x02]}

 

 

+x2{βm2{2n(1xcosθ)2[β2x2]+(1xcosθ)4[2+3β2(n+1)]n4n(1xcosθ)2}[273(n+1)3]1/2x0cosθ[1+xb]1/2

 

 

+β[233(n+1)3]1/2(1x0cosθ)4[β2x20][(12cos2θ4cos4θ)m2(1+xb0)3/2[2cos2θ(157cos2θ)6sin2θ(35cos2θ)+6sin4θ]]

 

 

β[273(n+1)3]1/2β2(1x0cosθ)3[1+xb0]1/2sin2θ

 

 

(4n+1)β2[233n2m4β2(n+1)]1/2(1x0cosθ)2}

 

x(1m2)β3[273(n+1)3]1/2cosθ

 

 

+x2β3[233(n+1)3]1/2{(12cos2θ4cos4θ)4sin2θ

 

 

m2[2cos2θ(157cos2θ)6sin2θ(35cos2θ)+6sin4θn(4n+1)(n+1)2]}

 

x(1m2)β3[273(n+1)3]1/2cosθ

 

 

+x2β3[273(n+1)3]1/2{4cos2θcos4θ1

 

 

m22[cos2θ(157cos2θ)12sin4θ+6sin2θn(4n+1)2(n+1)2]}

 

x(1m2)β3[273(n+1)3]1/2cosθ

 

 

+x2β3[273(n+1)3]1/2{3(1+sin2θ)2m22[33cos2θ19cos4θ6n(4n+1)2(n+1)2]}


Examples

Evaluate various expressions using the parameter set:   (n,θ,x)=(1,π3,14)

b

=

3218=118

1.375000000

(βη)2

=

(122)2[1+1125]=25+1129=4329

0.083984375

Re(Λ)

=

5β2+4329[236]=5β2+4328

5β2 + 0.167968750

Im(Λ)

=

β2[21034329]1/2=β[3432]1/2

8.031189202 β

Re(Λx)

=

[236]122(2+3112223)=(1+3326)

1.515625000

Im(Λx)

=

β2[2928343]1/2[122(2+3112223)]=β[213343]1/2(1+31126)

36.23373732 β

Re(Λθ)

=

2(34)1/2{244329+326(34)[34]}=328(2343+9)

-2.388335684

Im(Λθ)

=

(1)β(34)1/2[21034329]1/2{1+3292743(323)}=(1)β(34)1/2[2343]1/2{1+32243}

(-1) × 15.36617018 β


Re(2Λx2)

=

22[223][1+3221123]=22+3323=658

          8.125000000

Im(2Λx2)

=

β223[1123(22+3221123)][2443]3/2=[233433]1/2[11(27+33)]β

          30.76957507β

Re(2Λθ2)

=

124{26(322122)}+126{233+2+335722323}=2+128{23+335722331}

          4.269531250

Im(2Λθ2)

=

(1)β[2103]1/2(4329)1/2{12+322943126322(5222)+(321262943)2(322)312}

         

 

=

(1)β(3432)1/2{133243+35(243)2}

(-1) × 5.773638858 β


Re{(12xcosθ)Λx+sinθΛθ}

=

(1122)(1+3326)32328(2343+9)

 

 

=

(2397)3(2343+9)29

-0.931640625

Im{(12xcosθ)Λx+sinθΛθ}

=

(1122)β[213343]1/2(1+31126)+32(1)β32[2343]1/2{1+32243}

 

 

=

β[332543]1/2[2(26+33)(243+32)]

13.86780926 β

Re{(2+3xb)Λx3sin3θΛθ}

=

(2+3221123)(1+3326)+3(322)3/2328(2343+9)

 

 

=

972211+33211(2343+9)

9.248046874

Im{(2+3xb)Λx3sin3θΛθ}

=

β{(2+3221123)[213343]1/2(1+31126)+3(322)3/2(34)1/2[2343]1/2[1+32243]}

 

 

=

β{(32943)1/2[(26+33)2+33(243+32)]}

139.7753772

Step 7

Let's begin by slightly redefining the LHS and RHS collections of terms.

RHS4

RHS3m2x2Λ𝒜

 

=

x2[22(n+1)2m2Λ]𝒜,

LHS4

LHS3m2x2Λ𝒜

 

=

β2(1η2)(1xcosθ)3{(1xcosθ)[x22Λx2+2Λθ2]+x[(12xcosθ)Λx+sinθΛθ]}

 

 

nx3(1xcosθ)4[(2+3xb)Λx3sin3θΛθ]


Next Lowest Order

Let's begin with the RHS (Case B).

(n+1)𝒜

=

2n(n+1)+(n+1)(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n(n+1)3nβ2]

 

 

±ixcosθ(1xcosθ)2[233n2β2(n+1)]1/2

 

=

2n(n+1)+(n+1)[12xcosθ+x2cos2θ+𝒪(x3)][x2(1+xb)β24n]+[14xcosθ+6x2cos2θ+𝒪(x3)][2n(n+1)3nβ2]

 

 

±ixcosθ[12xcosθ+x2cos2θ+𝒪(x3)][233n2β2(n+1)]1/2

 

=

x0{2n(n+1)4n(n+1)+2n(n+1)}+x1{8n(n+1)cosθ8n(n+1)cosθ}

 

 

+x2{4n(n+1)cos2θ+(n+1)[1(βx)2]+12n(n+1)cos2θ3n(βx)2}+𝒪(x3)

 

 

±ix2(βx)nb022(n+1)[12xcosθ+x2cos2θ+𝒪(x3)]

 

=

x0{0}+x1{0}+x2{(n+1)[8ncos2θ+1](4n+1)(βx)2}+𝒪(x3)

 

 

±ix2(βx)nb022(n+1)[12xcosθ+x2cos2θ+𝒪(x3)]

where,

b0[273(n+1)3cos2θ]1/2.

Hence,

RHS4x2

=

22(n+1)2𝒜+m2𝒜{(4n+1)β2+(βη)2(n+1)[23(n+1)cos2θ3]±iβcosθ[273(n+1)3]1/2(βη)}

 

=

22(n+1)2𝒜+m2𝒜(n+1){x2(4n+1n+1)(βx)2+x2(1+x0b)[23(n+1)cos2θ3]±ix2(βx)b0(n+1)(1+x0b)1/2}

 

𝒜(n+1){22(n+1)+m2x20[[23(n+1)cos2θ3](4n+1n+1)(βx)2±i(βx)b0(n+1)]}

 

22(n+1)x2{(n+1)[8ncos2θ+1](4n+1)(βx)2±i(βx)nb022(n+1)[12x0cosθ+x20cos2θ+𝒪0(x3)]}

RHS4x4

22(n+1)(4n+1)(βx)222(n+1)2[8ncos2θ+1]±i(1)(βx)nb0.

This should be compared to,

LHS4x2

=

[(βx)21xb](1xcosθ)3{(1xcosθ)[x22Λx2+2Λθ2]+x[(12xcosθ)Λx+sinθΛθ]}

 

 

nx(1xcosθ)4[(2+3xb)Λx3sin3θΛθ].

Now, from above, we can write,

[x22Λx2+2Λθ2]

=

x2{2(n+1)[23(n+1)cos2θ3](1+3x0b)±iβ(b022)[b(4+3xb)(1+xb)3/2]}+x2{24(n+1)2(sin2θcos2θ)}

 

 

+x30{243(n+1)2cos3θ+24(n+1)2cos5θ+32(n+1)(16n+19)sin2θcosθ2323(n+1)2sin2θcos3θ}

 

 

±i(1)βb0x(1+x0b)1/2{1+3x0sin2θ(5cos2θ2)2(1+xb)cosθ+32x20sin6θ22(1+xb)2}

 

x2{2(n+1)[23(n+1)cos2θ3]+24(n+1)2(sin2θcos2θ)}±ix{xβ0(b022)[b(4+3xb)(1+xb)3/2]βb0}

 

2(n+1)x2{23(n+1)sin2θ3}±ix2{(βx)b0}.

Also,

x[(12xcosθ)Λx+sinθΛθ]

=

x2(n+1)[6+24(n+1)cos2θ]

 

 

x30(n+1)cosθ{[15+24(n+1)]cos2θ[9+237(n+1)]+233(n+1)cos4θ}

 

 

+x40(n+1){92232(1+2n)cos2θ[9+32(n+1)]cos4θ+23(n+1)cos6θ}

 

 

±ix2(βx)[253(n+1)31+x0(3cosθcos3θ)]1/2{2cosθx0[27cos2θ+3cos4θ]

 

 

x20cosθ[9+4cos2θcos4θ]}

 

2(n+1)x2[23(n+1)cos2θ3]±ix2(βx)b0.

Finally,

nx[(2+3xb)Λx3sin3θΛθ]

=

x222n(n+1)[23(n+1)cos2θ3]

 

 

+nx30223(n+1)cosθ{[22n5]+cos2θ[24n+19]22(n+1)cos4θ}

 

 

+nx4032(n+1)cos2θ{33+232cos2θ[22n+5]99cos4θ+23(n+1)cos6θ}

 

 

+nx40(n+1)sin4θ{33+32cos2θ[233n+27]2335(n+1)cos4θ}

 

 

±inx2(βx)[253(n+1)31+x0b]1/2{4cosθ+6x0(2bcosθ+sin4θ)+3x20(3b2cosθ+2bsin4θ+3sin6θcosθ)}

 

x222n(n+1)[23(n+1)cos2θ3]±i2nx2(βx)b0.

Inserting these three approximate expressions into the LHS_4 ensemble gives,

LHS4x2

=

[(βx)21xb0](1x0cosθ)3{(1x0cosθ)[x22Λx2+2Λθ2]+x[(12xcosθ)Λx+sinθΛθ]}

 

 

nx(1x0cosθ)4[(2+3xb)Λx3sin3θΛθ]

[(βx)21]{2(n+1)x2[23(n+1)sin2θ3]±ix2[(βx)b0]

 

+2(n+1)x2[23(n+1)cos2θ3]±ix2(βx)b0}

 

 

x222n(n+1)[23(n+1)cos2θ3]±i2nx2(βx)b0

LHS4x4

[(βx)21]{2(n+1)[23(n+1)sin2θ3]+2(n+1)[23(n+1)cos2θ3]}22n(n+1)[23(n+1)cos2θ3]

 

±i2n(βx)b0

 

22(n+1)(βx)2[22(n+1)3](n+1){[24(n+1)12]+22n[23(n+1)cos2θ3]}±i2n(βx)b0

 

22(n+1)(βx)2[4n+1]22(n+1)2[1+23ncos2θ]±i2n(βx)b0.

Assessment

The good news is that the real part of the LHS4 expression exactly matches the real part of the RHS4 expression. But the imaginary differ by a factor of 2. So, let's repeat the steps leading to the imaginary parts.

Case B:

Im[RHS4x2]

=

22(n+1)Im[(n+1)𝒜]+m2(n+1){Im[(n+1)𝒜]Re[Λ]+Re[(n+1)𝒜]Im[Λ]}

 

=

22(n+1)xcosθ(1xcosθ)2[233n2β2(n+1)]1/2

 

 

+m2(n+1){xcosθ(1xcosθ)2[233n2β2(n+1)]1/2}{(4n+1)β2+(βη)2(n+1)[23(n+1)cos2θ3]}

 

 

+m2(n+1){2n(n+1)+(n+1)(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n(n+1)3nβ2]}{βcosθ[273(n+1)3]1/2(βη)}

 

=

x2(βx){(1xcosθ)2nb0}

 

 

+m2x4(βx){(1xcosθ)2[nb022(n+1)2]}{[4n+1n+1](βx)2+(1+xb)[23(n+1)cos2θ3]}

 

 

+m2x2(βx){2n+(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n3nβ2(n+1)]}{(1+xb)1/2}

Im[RHS4x4](xβ)

=

(1xcosθ)2nb0

 

 

+m2{2n+(1xcosθ)2[x2(1+xb)β24n]+(1xcosθ)4[2n3nβ2(n+1)]}(1+xb)1/2

 

 

+m2{[4n+1n+1]β2+x2(1+xb)[23(n+1)cos2θ3]}(1xcosθ)2[nb022(n+1)2]

 

=

(1xcosθ)2nb0+m2{2n4n(1xcosθ)2+2n(1xcosθ)4}(1+xb)1/2

 

 

+m2(1xcosθ)2{x2(1+xb)3/2β2(1+xb)1/2[1+3n(1xcosθ)2(n+1)]}

 

 

+m2(1xcosθ)2{x2(1+xb)[23(n+1)cos2θ3][nb022(n+1)2][nb0(4n+1)22(n+1)3]β2}

 

=

(1xcosθ)2nb0+m2{2n4n[12xcosθ+x2cos2θ+𝒪(x3)]+2n[14xcosθ+6x2cos2θ+𝒪(x3)]}(1+xb)1/2

 

 

+m2x2(1xcosθ)2{22(n+1)2(1+xb)1/2+[23(n+1)cos2θ3]nb0}(1+xb)22(n+1)2

 

 

m2β2(1xcosθ)2{nb0(4n+1)+22(n+1)2(1+xb)1/2[(n+1)+3n(1xcosθ)2]}122(n+1)3

 

=

nb0[12xcosθ+x2cos2θ+𝒪(x3)]+m2{8nx2cos2θ+𝒪(x3)}(1+x0b)1/2

 

 

+m2x2(1x0cosθ)2{22(n+1)2(1+x0b)1/2+[23(n+1)cos2θ3]nb0}(1+x0b)22(n+1)2

 

 

m2β2(1x0cosθ)2{nb0(4n+1)+22(n+1)2(1+x0b)1/2[(n+1)+3n(1x0cosθ)2]}122(n+1)3

 

nb0[12xcosθ]

 

 

nb0x2cos2θ+m2x2{25n(n+1)2cos2θ+22(n+1)2+[23(n+1)cos2θ3]nb0}122(n+1)2

 

 

m2β2{nb0(4n+1)+22(n+1)2[(n+1)+3n]}122(n+1)3

Goldreich, Goodman and Narayan (1986)

Unperturbed Slim Torus Structure

Goldreich, Goodman & Narayan (1986, MNRAS, 221, 339) — hereafter, GGN86 — also used analytic techniques to analyze the properties of unstable, nonaxisymmetric eigenmodes in Papaloizou-Pringle tori. They restricted their discussion to only the slimmest tori, so overlap between the GGN86 and Blaes85 work is easiest to recognize if we begin with the enthalpy distribution prescribed for a "slim torus" by Blaes (1985), as discussed above, namely,

H=H0ΘH

=

H0H0β2[r2+r3(3cosθcos3θ)+𝒪(r4)].

[Note:   Here we have replaced the variable name, x, as used in Blaes85, with the variable name, r, in order (1) to emphasize that the variable represents a dimensionless radial coordinate, and (2) to avoid conflict with the GGN86 variable, x, which is a Cartesian coordinate with the standard dimension of length.]

Now, from our above discussion of equilibrium PP tori and recognizing that the Keplerian angular frequency at the location of the enthalpy maximum is,

ΩKGMptϖ03,

we can set,

H0

=

GMptβ22ϖ0=12ΩK2ϖ02β2.

Hence, for the slimmest tori — that is, keeping only the lowest order term in r — the enthalpy distribution becomes,

H

=

12ΩK2ϖ02β212ΩK2ϖ02[r2+r30(3cosθcos3θ)+𝒪(r4)0]

 

ΩK22[ϖ02β2ϖ02r2].

Following GGN86, the surface of the torus — where the enthalpy drops to zero — occurs at r=a/ϖ0. Hence, we recognize that,

β=aϖ0,

and we can rewrite the expression for the unperturbed enthalpy distribution as,

H

=

ΩK22[a2ϖ02r2].

This expression exactly matches equation (2.13) of GGN86 — which, is,

Q0(x,z)

=

Ω22[(2q3)(a2x2)z2],

once it is appreciated that, in moving from the Blaes85 discussion to the GGN86 discussion, ϖ02r2(x2+z2), and it is recognized that Blaes85 restricted his investigation to tori that have uniform specific angular momentum (q=2).

Additional Notation

(ky)GGN=(myϖ0)GGN(mϕ)Blaes

βGGN(maϖ0)GGNmβBlaes

From equation (5.16) of GGN86 we obtain "the lowest order [complex] expression for the [perturbed] velocity potential," namely,

ψ

=

1+14k2(5x23z2)4i(32)1/2kxβGGN.

Working on the imaginary part of this expression to put it in the terminology of Blaes85, we find,

Im(ψ)

=

4(32)1/2kxβGGN

 

=

4(32)1/2(mϖ0)[ϖ0(ηβBlaes)cosθ](mβBlaes)

 

=

4(32)1/2m2βBlaes2ηcosθ,

which exactly matches Im(fm) as derived by Blaes85 and summarized above. Similarly,

Re(ψ)

=

1+14k2(5x23z2)

 

=

1+14(mϖ0)2[ϖ02r2(5cos2θ3sin2θ)]

 

=

1+14η2m2βBlaes2[8cos2θ3]

 

=

1+m2βBlaes2[2η2cos2θ3η24].

This exactly matches Re(fm) as derived by Blaes85 and summarized above. This is in line with the following statement that appears in the acknowledgement section of GGN86: "We note that Omar Blaes … [has] independently derived many of the results reported in this paper."

Summary Comparison

For slim, incompressible tori with uniform specific angular momentum, Blaes85 gives, to lowest order:

fm(η,θ)+14β2m2

=

β2m2[2η2cos2θ3η24±4i(32)1/2ηcosθ].

By comparison, from GGN86 we obtain:

Ψ(η,θ)1

=

m2βBlaes2[2η2cos2θ3η244i(32)1/2ηcosθ].

To within an additive constant, these two functions are identical. The resulting amplitude function is (to within an overall scale factor and to within an arbitrary additive constant),

F(η,θ)

=

{[2η2cos2θ3η24]2+[4(32)1/2ηcosθ]2}1/2

 

=

{η2[42(32)cos2θ]+142η4[8cos2θ3]2}1/2

 

=

{(η2)2[253cos2θ]+(η2)4[8cos2θ3]2}1/2;

and the associate phase function is,

mϕm

=

tan1[273cos2θη2(8cos2θ3)2]+kθ.

See Also


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |