Appendix/Ramblings/T6CoordinatesPt3

From jetwiki
Jump to navigation Jump to search

Concentric Ellipsoidal (T6) Coordinates (Part 3)

Best Thus Far

Part A

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

 

A3D2

=

(x2+q4y2+p4z2),

      and,      

B𝒟2

=

(q4y2p4z2+x2p4z2+4x2q4y2)

Ax

=

2x,

Ay

=

2q4y,

Az

=

2p4z;

Bx

=

2x(4q4y2+p4z2),

By

=

2q4y(p4z2+4x2),

Bz

=

2p4z(q4y2+x2).

Try …

λ3

(BA)m/2=(D3D)m

[ABmλ3]λ3xi

12{ABxiBAxi}

[ABm]lnλ3lnxi

xi2{ABxiBAxi}.

In this case we find,

x2{}x

=

x2(2q4y2+p4z2)2,

y2{}y

=

q4y2(2x2+p4z2)2,

z2{}z

=

p4z2(x2q4y2)2.

The scale factor is, then,

h32

=

i=13(λ3xi)2

 

=

i=13{[mλ32AB][ABxiBAxi]}2

 

=

[mλ3AB]2{[x(2q4y2+p4z2)2]2+[q4y(2x2+p4z2)2]2+[p4z(x2q4y2)2]2}

h3

=

[ABmλ3]{[x(2q4y2+p4z2)2]2+[q4y(2x2+p4z2)2]2+[p4z(x2q4y2)2]2}1/2.

Part B (25 February 2021)

Now, from above, we know that,

(𝒟3D)2=AB

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2.

Example:
(q2,p2)=(2,5)     and     (x,y,z)=(0.7,0.23,0.1)λ1=1.0

[x(2q4y2+p4z2)]2 [q2y(p4z2+2x2)]2 [p2z(x2q4y2)]2 (𝒟3D)2
2.14037 1.39187 0.04623 3.57847

As an aside, note that,

AB

=

[ABm]lnλ3lnx+[ABm]lnλ3lny+[ABm]lnλ3lnz

m

=

lnλ3lnx+lnλ3lny+lnλ3lnz.

We realize that this ratio of lengths may also be written in the form,

(𝒟3D)2

=

6x2q4y2p4z2+x4(4q4y2+p4z2)+q8y4(4x2+p4z2)+p8z4(x2+q4y2).

Same Example, but Different Expression:
(q2,p2)=(2,5)     and     (x,y,z)=(0.7,0.23,0.1)λ1=1.0

6x2q4y2p4z2 x4(4q4y2+p4z2) q8y4(4x2+p4z2) p8z4(x2+q4y2) (𝒟3D)2
0.67620 0.94359 1.87054 0.08813 3.57847


Let's try …

λ5x

=

x(2q4y2+p4z2),

λ5y

=

q2y(p4z2+2x2),

λ5z

=

p2z(x2q4y2).

This means that the relevant scale factor is,

h52

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2=(𝒟3D)2

h5

=

(3D𝒟),

and the three associated direction cosines are,

γ51=h5(λ5x)

=

x(2q4y2+p4z2)(3D𝒟),

γ52=h5(λ5y)

=

q2y(p4z2+2x2)(3D𝒟),

γ53=h5(λ5z)

=

p2z(x2q4y2)(3D𝒟).

These direction cosines exactly match what is required in order to ensure that the coordinate, λ5, is everywhere orthogonal to both λ1 and λ4. GREAT! The resulting summary table is, therefore:

Direction Cosine Components for T10 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
4 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
5 --- 3D𝒟 x(2q4y2+p4z2) q2y(p4z2+2x2) p2z(x2q4y2) 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


Try …

λ5

=

x2q4y2q2+yq2p4zq4p2+xp4zp2

 

=

y2q2x2q4+yq2p4zq4p2+zp4xp2

 

=

1x2q4+p2zq4p2{[xp2]y2q2[zq4p2]+[x2q4+p2]yq2p4+[x2q4]zp4+q4p2}

 

=

1x2q4+p2zq4p2{F5}.

This gives,

λ5x

=

2q4x(y2q2x2q4)p4x(zp2xp2)

 

=

1x2q4+p2+1[2q4y2q2xp2+p4x2q4zp2].

Or, given that,

x2q4+p2+1

=

xzq4p2{F5λ5},

we can also write,

λ5x

=

zq4p2x{λ5F5}[2q4y2q2xp2+p4x2q4zp2]

Similarly,

λ5y

=

2q2y(y2q2x2q4)+q2p4y(yq2p4zq4p2)

 

=

1x2q4zq4p2[2q2y(y2q2zq4p2)+q2p4y(yq2p4x2q4)]

 

=

xp2y{λ5F5}[2q2(y2q2zq4p2)+q2p4(yq2p4x2q4)];

λ5z

=

q4p2z(yq2p4zq4p2)+p4z(zp4xp2)

 

=

1xp2zq4p2[p4z(zp4+q4p2)q4p2z(xp2yq2p4)]

 

=

x2q4z{λ5F5}[p4(zp4+q4p2)q4p2(xp2yq2p4)]

Understanding the Volume Element

Let's see if the expression for the volume element makes sense; that is, does

(h1h4h5)dλ1dλ4dλ5

=

dxdydz?

First, let's make sure that we understand how to relate the components of the Cartesian line element with the components of our T10 coordinates.

Line Element

MF53 claim that the following relation gives the various expressions for the scale factors; we will go ahead and incorporate the expectation that, since our coordinate system is orthogonal, the off-diagonal elements are zero.

ds2=dx2+dy2+dz2

=

i=1,4,5hi2dλi2.

Let's see. The first term on the RHS is,

h12dλ12

=

h12[(λ1x)dx+(λ1y)dy+(λ1z)dz]2

 

=

h12[(λ1x)2dx2+(λ1y)2dy2+(λ1z)2dz2

 

 

+2(λ1x)(λ1y)dxdy+2(λ1x)(λ1z)dxdz+2(λ1x)(λ1y)dydz];

the other two terms assume easily deduced, similar forms. When put together and after regrouping terms, we can write,

i=1,4,5hi2dλi2

=

[h12(λ1x)2+h42(λ4x)2+h52(λ5x)2]dx2

 

 

+[h12(λ1y)2+h42(λ4y)2+h52(λ5y)2]dy2

 

 

+[h12(λ1z)2+h42(λ4z)2+h52(λ5z)2]dz2.

Given that this summation should also equal the square of the Cartesian line element, (dx2+dy2+dz2), we conclude that the three terms enclosed inside each of the pair of brackets must sum to unity. Specifically, from the coefficient of dx2, we can write,

h12(λ1x)2

=

1h42(λ4x)2h52(λ5x)2.

Using this relation to replace h12 in each of the other two bracketed expressions, we find for the coefficients of dy2 and dz2, respectively,

[1h42(λ4x)2h52(λ5x)2](λ1y)2

=

[1h42(λ4y)2h52(λ5y)2](λ1x)2;

[1h42(λ4x)2h52(λ5x)2](λ1z)2

=

[1h42(λ4z)2h52(λ5z)2](λ1x)2.

We can use the first of these two expressions to solve for h42 in terms of h52, namely,

(λ1y)2h42(λ4x)2(λ1y)2h52(λ5x)2(λ1y)2

=

(λ1x)2h42(λ4y)2(λ1x)2h52(λ5y)2(λ1x)2

h42[(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

=

(λ1x)2(λ1y)2+h52(λ5x)2(λ1y)2h52(λ5y)2(λ1x)2

Analogously, the second of these two expressions gives,

h42[(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

=

(λ1x)2(λ1z)2+h52(λ5x)2(λ1z)2h52(λ5z)2(λ1x)2

Eliminating h4 between the two gives the desired overall expression for h5, namely,

0

=

[(λ1x)2(λ1z)2+h52(λ5x)2(λ1z)2h52(λ5z)2(λ1x)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

 

 

[(λ1x)2(λ1y)2+h52(λ5x)2(λ1y)2h52(λ5y)2(λ1x)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

=

h52{[(λ5x)2(λ1y)2(λ5y)2(λ1x)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

 

[(λ5x)2(λ1z)2(λ5z)2(λ1x)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]}

 

 

[(λ1x)2(λ1z)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

 

 

+[(λ1x)2(λ1y)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

=

h52h14h42h52{[γ512γ122γ522γ112][γ432γ112γ412γ132][γ512γ132γ532γ112][γ422γ112γ412γ122]}

 

 

+1h42h12{(λ1x)2[γ432γ112γ412γ132](λ1y)2[γ432γ112γ412γ132](λ1x)2[γ422γ112γ412γ122]+(λ1z)2[γ422γ112γ412γ122]}

 

=

h52h14h42h52{[γ512γ122γ522γ112][γ43γ11+γ41γ13][γ43γ11γ41γ13][γ512γ132γ532γ112][γ42γ11+γ41γ12][γ42γ11γ41γ12]}

 

 

+1h42h12{(λ1x)2[γ43γ11+γ41γ13][γ43γ11γ41γ13](λ1y)2[γ43γ11+γ41γ13][γ43γ11γ41γ13](λ1x)2[γ42γ11+γ41γ12][γ42γ11γ41γ12]+(λ1z)2[γ42γ11+γ41γ12][γ42γ11γ41γ12]}

 

=

1h14h42{[γ51γ12+γ52γ11]γ43[γ43γ11+γ41γ13]γ52+[γ51γ13+γ53γ11]γ42[γ42γ11+γ41γ12]γ53}

 

 

+1h14h42{γ122[γ43γ11+γ41γ13]γ52γ112[γ43γ11+γ41γ13]γ52γ112[γ42γ11+γ41γ12]γ53+γ132[γ42γ11+γ41γ12]γ53}

 

=

1h14h42{[(γ51γ12γ52γ11)γ43+γ122γ112](γ43γ11+γ41γ13)γ52+[(γ51γ13+γ53γ11)γ42γ112+γ132](γ42γ11+γ41γ12)γ53}

… Not sure this is headed anywhere useful!

Volume Element

(h1h4h5)dλ1dλ4dλ5

=

(h1h4h5)[(λ1x)dx+(λ1y)dy+(λ1z)dz][(λ4x)dx+(λ4y)dy+(λ4z)dz][(λ5x)dx+(λ5y)dy+(λ5z)dz]

 

=

[(γ11)dx+(γ12)dy+(γ13)dz][(γ41)dx+(γ42)dy+(γ43)dz][(γ51)dx+(γ52)dy+(γ53)dz]

COLLADA

Here we try to use the 3D-visualization capabilities of COLLADA to test whether or not the three coordinates associated with the T6 Coordinate system are indeed orthogonal to one another. We begin by making a copy of the Inertial17.dae text file, which we obtain from an accompanying discussion. When viewed with the Mac's Preview application, this group of COLLADA-based instructions displays a purple ellipsoid with axis ratios, (b/a, c/a) = (0.41, 0.385). This means that we are dealing with an ellipsoid for which,

qab

=

2.44

      and,      

pac

=

2.60.

λ1

(x2+q2y2+p2z2)1/2;

λ2

=

xy1/q2z2/p2;

3D

[x2+q4y2+p4z2]1/2;

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

First Trial

First Trial
(specified variable values have bgcolor="pink")
x y z λ1 3D 𝒟
0.5 0.35493 0.00000 1 0.46052 2.11310

Unit Vectors

e^1

=

ı^(x03D)+ȷ^(q2y03D)+k^(p2z03D)

 

=

ı^(0.23026)+ȷ^(0.97313);

e^2

=

x0q2y0p2z0𝒟{ı^(1x0)+ȷ^(1q2y0)+k^(2p2z0)}

 

=

k^(2x0q2y0𝒟)

 

=

k^(1) ;

e^3

=

3D𝒟{ı^[x0(2q4y02+p4z02)]+ȷ^[q2y0(p4z02+2x02)]+k^[p2z0(x02q4y02)]}

 

=

2q2x0y03D𝒟{ı^(q2y0)+ȷ^(x0)}=(1)3D{ı^(q2y0)+ȷ^(x0)}

 

=

ı^(0.97313)+ȷ^(0.23026).

Tangent Plane

From our above derivation, the plane that is tangent to the ellipsoid's surface at (x0,y0,z0) is given by the expression,

xx0+q2yy0+p2zz0

=

(λ12)0.

For this First Trial, we have (for all values of z, given that z0=0) …

(0.5)x+(2.11310)y

=

1

y

=

(10.5x)2.11310.

So let's plot a segment of the tangent plane whose four corners are given by the coordinates,

Corner x y z
A x_0 - 0.25 = +0.25 0.41408 -0.25
B x_0 + 0.25 = +0.75 0.29577 -0.25
C x_0 - 0.25 = +0.25 0.41408 +0.25
D x_0 + 0.25 = +0.75 0.29577 +0.25

Now, in order to give some thickness to this tangent-plane, let's adjust the four corner locations by a distance of ±0.1 in the e^1 direction.

Eight Corners of Tangent Plane

Corner 1: Shift surface-point location (x0,y0,z0) by (+Δe1) in the e^1 direction, by (+Δe2) in the e^2 direction, and by by (+Δe3) in the e^3 direction. This gives …

x1

=

x0+(Δe1)0.23026(Δe2)0.97313

Second Trial

Second Trial(q=2.44,p=2.60)
[specified variable values have bgcolor="pink"]
x_0 y_0 z_0 λ1 3D 𝒟
0.5 0.35493 0.00000 1 0.46052 2.11310

Generic Unit Vector Expressions

Let's adopt the notation,

e^i

=

ı^[eix]+ȷ^[eiy]+k^[eiz]

      for,       i=1,3.

Then, for the T6 Coordinate system, we have,

e1x

x03D;

     

e1y

q2y03D;

     

e1z

p2z03D;

e2x

q2y0p2z0𝒟;

     

e2y

x0p2z0𝒟;

     

e2z

2x0q2y0𝒟;

e3x

x0(2q4y02+p4z02)3D𝒟;

     

e3y

q2y0(p4z02+2x02)3D𝒟;

     

e3z

p2z0(x02q4y02)3D𝒟.


Second Trial
  x y z
e1 0.23026 0.97313 0.0
e2 0.0 0.0 -1.0
e3 - 0.97313 0.23026 0.0


What are the coordinates of the eight corners of a thin tangent-plane? Let's say that we want the plane to extend …

  • From (Δ1) to (+Δ1) in the e^1 direction … here we set Δ1=0.05;
  • From (Δ2) to (+Δ2) in the e^2 direction … here we set Δ2=0.25;
  • From (Δ3) to (+Δ3) in the e^3 direction … here we set Δ3=0.25.

Δx

=

Δ1e1x+Δ2e2x+Δ3e3x=0.23177;

Δy

=

Δ1e1y+Δ2e2y+Δ3e3y=+0.10622;

Δz

=

Δ1e1z+Δ2e2z+Δ3e3z=0.25000.

Tangent Plane Schematic
vertex x y z   x y z
0 x0|Δx| y0|Δy| z0|Δz| 0.26823 0.24871 -0.25
1 x0|Δx| y0+|Δy| z0|Δz| 0.26823 0.46115 -0.25
2 x0|Δx| y0|Δy| z0+|Δz| 0.26823 0.24871 0.25
3 x0|Δx| y0+|Δy| z0+|Δz| 0.26823 0.46115 0.25
4 x0+|Δx| y0|Δy| z0|Δz| 0.73177 0.24871 -0.25
5 x0+|Δx| y0+|Δy| z0|Δz| 0.73177 0.46115 -0.25
6 x0+|Δx| y0|Δy| z0+|Δz| 0.73177 0.24871 0.25
7 x0+|Δx| y0+|Δy| z0+|Δz| 0.73177 0.46115 0.25

In the figure on the left, vertex 0 is hidden from view behind the (yellow) solid rectangle.

Third Trial

GoodPlane01

Third Trial(q=2.44,p=2.60)
[specified variable values have bgcolor="pink"]
x_0 y_0 z_0 λ1 3D 𝒟
0.8 0.24600 0.00000 1 0.59959 2.34146

Again, for the T6 Coordinate system, we have,

e1x

x03D;

     

e1y

q2y03D;

     

e1z

p2z03D;

e2x

q2y0p2z0𝒟;

     

e2y

x0p2z0𝒟;

     

e2z

2x0q2y0𝒟;

e3x

x0(2q4y02+p4z02)3D𝒟;

     

e3y

q2y0(p4z02+2x02)3D𝒟;

     

e3z

p2z0(x02q4y02)3D𝒟.


Third Trial
  x y z ΔTP
e1 0.47967 0.87745 0.0 0.02
e2 0.0 0.0 -1.0 0.25
e3 - 0.87753 0.47952 0.0 0.25

In constructing the Tangent-Plane (TP) for a 3D COLLADA display, we first move from the point that is on the surface of the ellipsoid, x0=(x0,y0,z0)=(0.8,0.246,0.0), to

vertex
"m"
Pm Components
xm=ı^Pm ym=ȷ^Pm zm=k^Pm
0 x0Δ1e^1Δ2e^2Δ3e^3

x0Δ1e1xΔ2e2xΔ3e3x

y0Δ1e1yΔ2e2yΔ3e3y

z0Δ1e1zΔ2e2zΔ3e3z

   

0.8 - 0.02 (0.47952) - 0.25 (-0.87752) = 1.00979

0.24590 - 0.02 (0.87753) - 0.25 (0.47952) = 0.10847

- 0.25 (-1.0) = + 0.25

1 x0Δ1e^1+Δ2e^2Δ3e^3

x0Δ1e1x+Δ2e2xΔ3e3x

y0Δ1e1y+Δ2e2yΔ3e3y

z0Δ1e1z+Δ2e2zΔ3e3z

   

0.8 - 0.02 (0.47952) - 0.25 (-0.87752) = 1.00979

0.24590 - 0.02 (0.87753) - 0.25 (0.47952) = 0.10847

+ 0.25 (-1.0) = - 0.25

2 x0Δ1e^1Δ2e^2+Δ3e^3

x0Δ1e1xΔ2e2x+Δ3e3x

y0Δ1e1yΔ2e2y+Δ3e3y

z0Δ1e1zΔ2e2z+Δ3e3z

   

0.8 - 0.02 (0.47952) + 0.25 (-0.87752) = 0.56307

0.24590 - 0.02 (0.87753) + 0.25 (0.47952) = 0.34823

- 0.25 (-1.0) = + 0.25

3 x0Δ1e^1+Δ2e^2+Δ3e^3

x0Δ1e1x+Δ2e2x+Δ3e3x

y0Δ1e1y+Δ2e2y+Δ3e3y

z0Δ1e1z+Δ2e2z+Δ3e3z

   

0.8 - 0.02 (0.47952) + 0.25 (-0.87752) = 0.57103

0.24590 - 0.02 (0.87753) + 0.25 (0.47952) = 0.34823

+ 0.25 (-1.0) = - 0.25

4  

0.8 + 0.02 (0.47952) - 0.25 (-0.87752) = 1.0290

0.24590 + 0.02 (0.87753) - 0.25 (0.47952) = 0.1436

- 0.25 (-1.0) = + 0.25

5  

0.8 + 0.02 (0.47952) - 0.25 (-0.87752) = 1.0290

0.24590 + 0.02 (0.87753) - 0.25 (0.47952) = 0.1436

+ 0.25 (-1.0) = - 0.25

6  

0.8 + 0.02 (0.47952) + 0.25 (-0.87752) = 0.59021

0.24590 + 0.02 (0.87753) + 0.25 (0.47952) = 0.38333

- 0.25 (-1.0) = + 0.25

7  

0.8 + 0.02 (0.47952) + 0.25 (-0.87752) = 0.59021

0.24590 + 0.02 (0.87753) + 0.25 (0.47952) = 0.38333

+ 0.25 (-1.0) = - 0.25


Tangent Plane Schematic Vertex Locations via Excel
x0=0.8,z0=0.0,y0=0.246,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25

GoodPlane02

x0=0.075,z0=0.0,y0=0.4089,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25

GoodPlane03

x0=0.25,z0=0.20,y0=0.33501,λ1=1.0
Tangent Plane Schematic Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25 Δ1=0.02,Δ2=0.10,Δ3=0.25

CAPTION:   The image on the right differs from the image on the left in only one way — Δ2 = 0.1 instead of 0.25. It illustrates more clearly that the e^3 (longest) coordinate axis is not parallel to the z-axis when z00.

GoodPlane04

x0=0.25,z0=1/3,y0=0.1777,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.10,Δ3=0.25

Further Exploration

Let's set: x0=0.25,y0=0.33501,z0=0.2λ1=1.00000,λ2=0.33521.


qab

=

2.43972

      and,      

pac

=

2.5974.

λ1

(x2+q2y2+p2z2)1/2;

λ2

=

xy1/q2z2/p2;

3D

[x2+q4y2+p4z2]1/2;

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

Next, let's examine the curve that results from varying z while λ1 and λ2 are held fixed. From the expression for λ2 we appreciate that,

x

=

λ2z2/p2y1/q2;

and from the expression for λ1 we have,

x2

=

λ12q2y2p2z2.

Hence, the relationship between y and z is,

[λ2z2/p2y1/q2]2

=

λ12q2y2p2z2

λ22z4/p2

=

y2/q2[λ12q2y2p2z2].


Alternatively,

y

=

[λ2z2/p2x]q2.

Hence, the relationship between x and z is,

x2

=

λ12p2z2q2[λ2z2/p2x]2q2

x2(q2+1)

=

x2q2[λ12p2z2]q2[λ2z2/p2]2q2

x2

=

{x2q2[λ12p2z2]q2[λ2z2/p2]2q2}1/(q2+1)

Here are some example values …

λ1=1    and,     λ2=0.33521
z 1st Solution   2nd Solution lambda_3 coordinate
y1 x1 y2 x2
0.01 0.407825695 0.0995168 - -
0.03 0.40481851 0.138 - -
0.04 0.40309223 0.1503934 - -
0.08 0.393779065 0.1854283 - -
0.12 0.37990705 0.2103761 - -
0.16 0.36067787 0.23111 1.04123×10-4 0.9095546
0.2 0.33500747 0.2500033 2.23778×10-4 0.85448
0.22 0.31923525 0.2592611 3.36653 ×10-4 0.82065
0.24 0.30106924 0.2686685 5.2327 ×10-4 0.78192
0.26 0.2799962 0.2784963 8.53243 ×10-4 0.73752
0.28 0.25521147 0.2891526 1.491545 ×10-3 0.68634
0.3 0.22530908 0.3013752 2.89262 ×10-3 0.62671
0.32 0.1873233 0.3168808 6.6223 ×10-3 0.55579
0.34 0.13149897 0.3423994 2.09221 ×10-2 0.46637
0.343 0.1191543 0.3490285 0.026458 0.4496
0.344 0.1145 0.3517 0.02880 0.4435
0.345 0.1093972 0.354688 0.03155965 0.4371186
0.3485 0.0847372 0.3713588 0.0480478 0.4085204

See Also


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |