SSC/Structure/OtherAnalyticRamblings

From jetwiki
Jump to navigation Jump to search

Ramblings Regarding the Stability of Other Analytically Definable, Spherical Equilibrium Models

The material presented in this chapter was originally developed as a subsection of a chapter that discusses "Other" Analytic Equilibrium Models."


Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Generic Setup

Dividing the above, 2nd-order ODE through by the quantity, [R2(P0/Pc)], gives,

d2xdr02+[4r01R(ρ0ρc)(g0gSSC)(PcP0)]dxdr0[1R(PcP0)(ρ0ρc)(g0gSSC)αr0]x=1R2(PcP0)(ρ0ρc)[(τSSC2ω2γg)]x,


which matches Prasad's (1949) equation (1), namely,

x'+[4r0μ(r0)r0]x'[αμ(r0)r02]x

=

(PcP0)(ρ0ρc)[n2ρcγgPc]x,

where, primes indicate differentiation with respect to r0, and,

μ(r0)r0R(PcP0)(ρ0ρc)(g0gSSC).

(Note that Prasad's equation has the awkward units of inverse length-squared.) Regrouping terms in Prasad's governing equation, multiplying through by R2 (to make the equation dimensionless), and now letting primes denote differentiation with respect to the dimensionless radial coordinate, χ0, we quite generally can write the linear adiabatic wave equation as,

(PcP0)(ρ0ρc)σ2x

=

[x'+4x'χ0]μ(χ0)χ0[x'+αxχ0]

 

=

1χ04ddχ0(χ04x')μ(χ0)χ0[1χ0αddχ0(χ0αx)].

Defining,

A

(P0Pc)(ρcρ0),

B

Aμ(χ0)χ0=(g0gSSC),

the governing equation becomes,

σ2x

=

Bχ0αddχ0(χ0αx)Aχ04ddχ0(χ04x')

 

=

B[αxχ0+x']A[4x'χ0+x'].

Notice that, because,

g0=1ρ0dP0dr0,

at every radial location throughout the configuration, it must also be true that, for any equilibrium configuration,

B

=

(ρ0ρc)1d(P0/Pc)dχ0

BA

=

ddχ0[ln(P0Pc)].

The following table shows that this relationship holds for a collection of analytically described equilibrium structures.

Table 1a: Properties of Analytically Defined Equilibrium Structures
Model ρ0ρc P0Pc ddχ0(P0Pc)
Uniform-density 1 1χ02 2χ0
Linear 1χ0 15(524χ02+28χ039χ04) 15[48χ0+84χ0236χ03]
Parabolic 1χ02 12(25χ02+4χ04χ06) 5χ0+8χ033χ05
n=1 Polytrope sin(πχ0)πχ0 [sin(πχ0)πχ0]2 2sin(πχ0)(π2χ03)[πχ0cos(πχ0)sin(πχ0)]


Table 1b: Properties of Analytically Defined Equilibrium Structures
Model ρ0ρc Bg0gSSC A(P0Pc)(ρ0ρc)1 (P0Pc)(ρ0ρc)2
Uniform-density 1 2χ0 1χ02 1χ02
Linear 1χ0 485(χ034χ02) 15(1χ0)(5+10χ09χ02) (1+2χ095χ02)
Parabolic 1χ02 5χ03χ03 12(1χ02)(2χ02) (112χ02)
n=1 Polytrope sin(πχ0)πχ0 2πχ02[sin(πχ0)πχ0cos(πχ0)] sin(πχ0)πχ0 1

Leaning on this new expression for the ratio, B/A, let's play with the form of the governing equation.

σ2x

=

A{1χ04ddχ0(χ04x')+ddχ0[ln(P0Pc)]1χ0αddχ0(χ0αx)}

 

=

A(P0Pc)1{(P0Pc)1χ04ddχ0(χ04x')+ddχ0(P0Pc)1χ0αddχ0(χ0αx)}

Polytropic Configurations

Let's compare this presentation of the LAWE to the form of the LAWE that has been derived specifically for polytropic equilibrium configurations, namely,

d2xdξ2+[4(n+1)V(ξ)ξ]dxdξ+[ω2(an2ρcγgPc)θcθ(34γg)(n+1)V(x)ξ2]x

=

0,

where,

V(ξ)

ξ(θ/θc)d(θ/θc)dξ=g0an(an2ρ0P0)ξ(n+1).

[Note that θc=1 and, therefore for all practical purposes, it can be dropped. This notation was introduced in our separate discussion of the polytropic LAWE in order to make it clear how our derivations have overlapped earlier published work.] Regrouping terms, we have,

[ω2(an2ρcγgPc)θcθ]x

=

d2xdξ2+[4(n+1)V(ξ)ξ]dxdξ[α(n+1)V(x)ξ2]x

 

=

[d2xdξ2+(4ξ)dxdξ][(n+1)V(ξ)ξ][dxdξ+αxξ]

 

=

1ξ4ddξ(ξ4dxdξ)[(n+1)V(ξ)ξ][1ξαddξ(ξαx)]

 

=

1ξ4ddξ(ξ4dxdξ)+[(n+1)dln(θ/θc)dξ][1ξαddξ(ξαx)].

Next we note that, written in terms of the traditional polytropic radial coordinate, ξ, the fractional radius,

χ0r0R=ξξ1=anξR.

Hence, multiplying the polytropic LAWE through by the quantity, (R/an)2, gives,

1χ04ddχ0(χ04dxdχ0)+[(n+1)dln(θ/θc)dχ0][1χ0αddχ0(χ0αx)]

=

[ω2(R2ρcγgPc)θcθ]x

 

=

(θcθ)σ2x.

Finally, noting that, for polytropic configurations,

θθc

=

(P0Pc)(ρ0ρc)1=(P0Pc)1/(n+1),

we can rewrite the polytropic LAWE in the form,

1χ04ddχ0(χ04dxdχ0)+[dln(P0/Pc)dχ0][1χ0αddχ0(χ0αx)]

=

(P0Pc)1(ρ0ρc)σ2x,

which precisely matches the general expression for the LAWE presented at the end of our generic setup, directly above.

This seems to be a particularly insightful way to write the LAWE, as the only structural functions that appear explicitly are P0(χ0) and ρ0(χ0). It appears as though the eigenfunctions that describe adiabatic radial pulsations do not explicitly depend a priori on the radial dependence of the equilibrium gravitational acceleration.

Examine Structural Pressure-Density Relation

Derivation

One striking property exhibited by the example configurations tabulated above is the structural relationship between the chosen function, ρ0(χ0), and the corresponding radial pressure distribution, P0(χ0), that is dictated by,

Hydrostatic Balance

1ρdPdr=dΦdr=GMrr2 ,

As has been detailed in the last column of Table 1b, in all four cases, the ratio, (P0/Pc)(ρ0/ρc)2, is an analytically prescribed polynomial expression. That is, the pressure is "evenly divisible" by the square of the density. Let's examine how broadly reliable this behavior is. [Note that, for simplicity in typing, hereafter throughout this subsection we will drop the subscript zero and, rather than χ0, we will use zr/R to denote the dimensionless radial coordinate.]


Assume a mass-distribution given by the general quadratic function,

ρρc

=

1azbz2,

where both coefficients, a and b, are positive.


ASIDE: Surface Location

The surface of the configuration will be defined by the radial location, zs, at which the density first goes to zero. If b=0, then the surface will be located at zs=a1; and if a=0, it will be located at zs=b1/2. More generally, however, the roots of the quadratic equation that results from setting ρ/ρc to zero are,

z±

=

a2b[1(1+4ba2)1/2].

Because only the z+ solution provides positive roots, we conclude that, when both a and b are nonzero, the radial coordinate of the surface is,

zs=z+

=

a2b[(1+4ba2)1/21].

We acknowledge, as well, that the density profile can now be written in terms of these roots; specifically,

ρρc

=

b(z+z)(zz).

In the discussion, below, it may be advantageous to adopt the following notation:

24ba2=2b1/2a,

in which case,

azs=22[(1+2)1/21]         and         b1/2zs=1[(1+2)1/21].


This specified density profile implies a mass distribution,

Mr

=

4πR3ρc0z(1azbz2)z2dz

 

=

4πR3ρc(z33az44bz55).

The hydrostatic balance condition therefore implies,

1Rρc(ρρc)1dPdz

=

GR2z2[4πR3ρc(z33az44bz55)]

[14πGR2ρc2]dPdz

=

(z3az24bz35)(ρρc)

 

=

(z3az24bz35)+a(z23az34bz45)+b(z33az44bz55)

 

=

(13)z+z2(a4+a3)+z3(b5a24+b3)+z4(ab5ab4)z5(b25)

 

=

(13)z+z2(7a12)+z3(8b15a24)z4(9ab20)z5(b25)

(PPn)

=

[(13)z+z2(7a12)+z3(8b15a24)z4(9ab20)z5(b25)]dz

 

=

[(16)z2+z3(7a36)+z4(2b15a216)z5(9ab100)z6(b230)]+C.

where, C, is an integration constant, and,

Pn4πGρc2R2.

The integration constant — which also proves to be the normalized central pressure — is determined by ensuring that the pressure goes to zero at the surface of the configuration, zs. That is,

C=PcPn

=

[(16)zs2+zs3(7a36)+zs4(2b15a216)zs5(9ab100)zs6(b230)].

Hence, the pressure profile is,

PPn

=

(16)(zs2z2)(7a36)(zs3z3)(2b15a216)(zs4z4)+(9ab100)(zs5z5)+(b230)(zs6z6).

Let's check this general expression against the specific cases described above.

Example1

First, let's set b=0, but leave a general. As described in the above ASIDE, this means that zs=a1. So the pressure distribution is,

PPn

=

(16)(zs2z2)(7a36)(zs3z3)+(a216)(zs4z4)

 

=

(16)(a2z2)(7a36)(a3z3)+(a216)(a4z4)

 

=

a2{16[1(az)2]736[1(az)3]+116[1(az)4]}.

And from the expression for the integration constant, we have,

PcPn

=

[(16)a2a3(7a36)+a4(a216)]

 

=

a2[16736+116]

 

=

52432a2.

Hence, dividing one expression by the other, we obtain,

PPc

=

15{24[1(az)2]28[1(az)3]+9[1(az)4]}.

Let's check to see if this "general linear" pressure distribution is evenly divisible by the square of the density distribution which, in this case, is,

ρρc

=

1az.

Strategically rewriting the expression for the pressure distribution gives,

PPc

=

15{24[1(az)][1+(az)]28[1(az)][1+(az)+(az)2]+9[1(az)][1+(az)][1+(az)2]}

 

=

15(ρρc){24[1+(az)]28[1+(az)+(az)2]+9[1+(az)][1+(az)2]}

 

=

15(ρρc){5+24(az)28[(az)+(az)2]+9[(az)+(az)2+(az)3]}

 

=

15(ρρc){5+5(az)19(az)2+9(az)3}.

And, as luck would have it, the expression inside the curly braces can be "divided evenly" by the quantity, [1(az)], one more time. Specifically, the expression becomes,

PPc

=

15(ρρc)2[5+10(az)9(az)2].


Example2

First, let's set a=0, but leave b general. As described in the above ASIDE, this means that zs=b1/2. So the pressure distribution is,

PPn

=

(16)(zs2z2)(2b15)(zs4z4)+(b230)(zs6z6)

 

=

(16)(b1z2)(2b15)(b2z4)+(b230)(b3z6)

 

=

1b{(16)[1bz2](215)[1(bz2)2]+(130)[1(bz2)3]}.

And from the expression for the integration constant, we have,

PcPn

=

[(16)zs2zs4(2b15)+zs6(b230)]

 

=

1b[16215+130]

 

=

135b.

Hence, dividing one expression by the other, we obtain,

PPc

=

12{5[1bz2]4[1(bz2)2]+[1(bz2)3]}.

Let's check to see if this "general parabolic" pressure distribution is evenly divisible by the square of the density distribution which, in this case, is,

ρρc

=

1bz2.

Strategically rewriting the expression for the pressure distribution gives,

PPc

=

12{5[1(bz2)]4[1(bz2)][1+(bz2)]+[1(bz2)][1+(bz2)+(bz2)2]}

 

=

12(ρρc){54[1+(bz2)]+[1+(bz2)+(bz2)2]}

 

=

12(ρρc)[23(bz2)+(bz2)2]

Again, as luck would have it, the expression inside the square brackets can be "divided evenly" by the quantity, [1(bz2)], one more time. Specifically, the expression becomes,

PPc

=

12(ρρc)2[2(bz2)].

Example3

In the most general quadratic case, we should rewrite the pressure distribution as,

PPn

=

1243252{23352(zs2z2)22527a(zs3z3)[2535b3252a2](zs4z4)+2234ab(zs5z5)+2335b2(zs6z6)}

 

=

zs2243252{600(1ζ2)700(azs)(1ζ3)[480(bzs2)225(azs)2](1ζ4)+324(azs)(bzs2)(1ζ5)+120(bzs2)2(1ζ6)},

where, ζz/zs. Similarly, let's rewrite the integration constant as,

PcPn

=

zs2243252{600700(azs)[480(bzs2)225(azs)2]+324(azs)(bzs2)+120(bzs2)2}.

So the pressure can be written as,

[243252zs2][PPn]

=

[243252zs2][PcPn]600ζ2+700(azs)ζ3+[480(bzs2)225(azs)2]ζ4324(azs)(bzs2)ζ5120(bzs2)2ζ6.

The question that remains to be answered is: Is this expression for the pressure distribution "evenly divisible" by the square (or even the first power) of the normalized density distribution which, as defined above for the general quadratic case, is,

ρρc=1azbz2=1(azs)ζ(bzs2)ζ2.

In attempting to answer this question, it may prove advantageous to refer back to the above ASIDE discussion of the roots of this quadratic function and, in particular, that,

azs=22[(1+2)1/21]         and         b1/2zs=1[(1+2)1/21],

where, 24b/a2.


Uniform Density

In the case of a uniform-density configuration, the governing equation is,

σ2x

=

2χ0[αxχ0+x'](1χ02)[4x'χ0+x'],

where,

σ2τSSC2ω2γg=6γg[ω24πGρ¯].

The following individual mode analyses should be compared with the results found in our discussion of Sterne's general solution.

Mode 0

Try an eigenfunction of the form,

x=a0,

in which case,

x'=x'=0.

In order for this to be a solution, we must have,

σ2a0

=

2χ0[αa0χ0]

6γg[ω24πGρ¯]

=

2α=2(34γg)

ω24πGρ¯

=

γg43.


Mode 2

Try an eigenfunction of the form,

x=a0+a2χ02,

in which case,

x'=2a2χ0        and         x'=2a2.

In order for this to be a solution, we must have,

σ2(a0+a2χ02)

=

2[α(a0+a2χ02)+χ0(2a2χ0)](1χ02)[4(2a2χ0)χ0+2a2]

 

=

2αa0+χ02[2a2(2+α)]10a2(1χ02)

σ2a02αa0+10a2

=

χ02[σ2+2(2+α)+10]a2.

Given that the coefficients on both sides of this expression must independently be zero, we have:

σ2

=

2(2+α)+10

ω24πGρ¯

=

γg6[14+2(34γg)]

 

=

γg6[208γg]=13(10γg4),

and

a2a0

=

110[2ασ2]

 

=

110{2α[14+2α)]}=75.

Parabolic Density Distribution

In the case of a parabolic density distribution, the governing equation is,

σ2x

=

(5χ03χ03)[αxχ0+x']12(1χ02)(2χ02)[4x'χ0+x'],

where,

σ2τSSC2ω2γg=15γg[ω24πGρ¯].


First Trial

Try an eigenfunction of the form,

x=(2χ02)1(a+bχ02+cχ04),

in which case,

x'

=

(2χ02)1(2bχ0+4cχ03)+2χ0(2χ02)2(a+bχ02+cχ04)

 

=

(2χ02)2[(2χ02)(2bχ0+4cχ03)+2χ0(a+bχ02+cχ04)]

 

=

2χ0(2χ02)2[(2χ02)(b+2cχ02)+(a+bχ02+cχ04)]

 

=

2χ0(2χ02)2[(2b+4cχ02bχ022cχ04)+(a+bχ02+cχ04)]

 

=

2χ0(2χ02)2[(a+2b)+4cχ02cχ04];

and,

x'

=

(2χ02)1(2b+12cχ02)+2χ0(2χ02)2(2bχ0+4cχ03)+2(2χ02)2(a+bχ02+cχ04)

 

 

+2χ0(a+bχ02+cχ04)[2(2χ02)3(2χ0)]+2χ0(2χ02)2(2bχ0+4cχ03)

 

=

(2χ02)3[2(44χ02+χ04)(b+6cχ02)+4χ02(2χ02)(b+2cχ02)+2(2χ02)(a+bχ02+cχ04)

 

 

+8χ02(a+bχ02+cχ04)+4χ02(2χ02)(b+2cχ02)]

 

=

2(2χ02)3{(4b+24cχ024bχ0224cχ04+bχ04+6cχ06)+(8bχ02+16cχ044bχ048cχ06)

 

 

+(2a+2bχ02+2cχ04aχ02bχ04cχ06)+(4aχ02+4bχ04+4cχ06)}

 

=

2(2χ02)3{(4b+2a)+χ02(24c4b+8b+2ba+4a)+χ04(24c+b+16c4b+2cb+4b)+χ06(6c8cc+4c)}

 

=

2(2χ02)3{(2a+4b)+χ02(3a+6b+24c)+χ04(6c)+χ06(c)}


In order for this to be a solution, we must have,

σ2x

=

(53χ02)[αx+χ0x'](1χ02)(2χ02)[2x'χ0+x'2]

σ2(2χ02)1(a+bχ02+cχ04)

=

(53χ02)[α(2χ02)1(a+bχ02+cχ04)+2χ02(2χ02)2[(a+2b)+4cχ02cχ04]]

 

 

(1χ02)[4(2χ02)1[(a+2b)+4cχ02cχ04]+(2χ02)2{(2a+4b)+χ02(3a+6b+24c)6cχ04+cχ06}].

Multiplying through by (2χ02)2 gives,

σ2(2χ02)(a+bχ02+cχ04)

=

(53χ02){α(2χ02)(a+bχ02+cχ04)+2χ02[(a+2b)+4cχ02cχ04]}

 

 

(1χ02){4(2χ02)[(a+2b)+4cχ02cχ04]+[(2a+4b)+χ02(3a+6b+24c)6cχ04+cχ06]}

σ2[2a+χ02(2ba)+χ04(2cb)cχ06]

=

(53χ02){α[2a+χ02(2ba)+χ04(2cb)cχ06]}

 

 

+(53χ02){(2a+4b)χ02+8cχ042cχ06}

 

 

(1χ02){[8(a+2b)+32cχ028cχ04][4χ02(a+2b)+16cχ044cχ06]}

 

 

(1χ02){(2a+4b)+χ02(3a+6b+24c)6cχ04+cχ06}

 

=

(53χ02){2aα+χ02[(2ba)α+(2a+4b)]+χ04[(2cb)α+8c](2+α)cχ06}

 

 

(1χ02){(10a+20b)+χ02[56ca2b]+χ04[30c]+5cχ06}

So, the coefficients of each even power of χ0n are:

χ00   :  

2aσ210aα+10a+20b=a(2σ210α+10)+20b

χ02   :   (2ba)σ25[(2ba)α+(2a+4b)]+6aα+[56ca2b](10a+20b)

=a[σ25(α+2)+6α110]+b[2σ210α20220]+c[56]

=a[σ2+11α21]+b[2σ210α42]+56c

χ04   :   (2cb)σ25[(2cb)α+8c]30c+3[(2ba)α+(2a+4b)][56ca2b]

=a[3α+7]+b[σ2+5α+6α+12+2]+c[2σ210α403056]

=a[73α]+b[11ασ2+14]+c[2σ210α126]

χ06   :   cσ2+(10+5α)c+3[(2cb)α+8c]+5c+30c

=b[3α]+c[σ2+10+5α+6α+24+35]

=b[3α]+c[11ασ2+69]

χ08   :  

3(2+α)c5c=c[113α]

Independent Investigation of Parabolic Distribution

In the specific case of a parabolic density distribution, the leading factor on the LHS is,

1Aparab(PcP0)(ρ0ρc)

=

(1χ02)(1χ02)2(112χ02)=1(1χ02)(112χ02)=223χ02+χ04,

and the function appearing on the RHS is,

μ(χ0)

=

χ02(1χ02)(53χ02)(1χ02)2(112χ02)=χ02(53χ02)Aparab.

Multiplying the linear adiabatic wave equation through by Aparab, gives,

σ2x

=

Aparabχ04ddχ0(χ04x')Bparabχ0αddχ0(χ0αx),

where,

Bparabχ0(53χ02).

Now we note that,

ddχ0[Aparabx']

=

Aparabχ04ddχ0[χ04x']+χ04x'ddχ0[Aparabχ04]

Aparabχ04ddχ0[χ04x']

=

ddχ0[Aparabx']χ04x'ddχ0[Aparabχ04]

 

=

ddχ0[Aparabx']χ04x'2ddχ0[13χ02+2χ04]

 

=

ddχ0[Aparabx']χ04x'[3χ034χ05]

 

=

ddχ0[Aparabx']+x'χ0(43χ02).

Similarly we note that,

ddχ0[Bparabx]

=

Bparabχ0αddχ0[χ0αx]+χ0αxddχ0[Bparabχ0α]

Bparabχ0αddχ0[χ0αx]

=

ddχ0[Bparabx]χ0αxddχ0[Bparabχ0α]

 

=

ddχ0[Bparabx]χ0αxddχ0[5χ01α3χ03α]

 

=

ddχ0[Bparabx]χ0αx[5(1α)χ0α3(3α)χ02α]

 

=

ddχ0[Bparabx]x[5(1α)3(3α)χ02].

Hence, the LAWE can be rewritten as,

σ2x

=

ddχ0[Aparabx']+x'χ0(43χ02)ddχ0[Bparabx]+x[5(1α)3(3α)χ02];

then multiplying through by χ0, and rearranging terms gives,

x{[5(1α)+σ2]χ03(3α)χ03}

=

χ0ddχ0[Aparabx'Bparabx]+x'(43χ02).

Next, we note that,

Aparabx'

=

ddχ0(Aparabx)x[ddχ0(Aparab)]

 

=

ddχ0(Aparabx)x2[ddχ0(23χ02+χ04)]

 

=

ddχ0(Aparabx)+x(3χ02χ03)

Aparabx'Bparabx

=

ddχ0(Aparabx)+[(3χ02χ03)(5χ03χ03)]x

 

=

ddχ0(Aparabx)(2χ0χ03)x.

So, the LAWE becomes,

x{[5(1α)+σ2]χ03(3α)χ03}

=

χ0ddχ0[ddχ0(Aparabx)(2χ0χ03)x]+x'(43χ02)

 

=

χ0d2dχ02(Aparabx)χ0ddχ0[(2χ0χ03)x]+x'(43χ02)

 

=

χ0d2dχ02(Aparabx){ddχ0[(2χ02χ04)x](2χ0χ03)x}+{ddχ0[(43χ02)x]+6χ0x}

 

=

χ0d2dχ02(Aparabx)+ddχ0[(43χ02)x(2χ02χ04)x]+(2χ0χ03)x+6χ0x

 

=

χ0d2dχ02(Aparabx)+ddχ0[(45χ02+χ04)x]+(8χ0χ03)x.

Moving the last term on the RHS of this expression to the LHS, and factoring the polynomial coefficients of the terms inside of the first and second derivatives gives,

x{(5α13σ2)χ0+(103α)χ03}

=

χ02d2dχ02[(1χ02)(2χ02)x]+ddχ0[(1χ02)(4χ02)x].



First Trial (Same as Above)

Try an eigenfunction of the form,

x=(2χ02)1(a+bχ02+cχ04),

in which case,


LHS

=

χ0(2χ02)2{(a+bχ02+cχ04)(2χ02)[(5α13σ2)+(103α)χ02]}

 

=

χ0(2χ02)2(a+bχ02+cχ04){(10α262σ2)+(σ211α+33)χ02+(3α10)χ04}

 

=

χ0(2χ02)2{a(10α262σ2)+χ02[a(σ211α+33)+b(10α262σ2)]

 

 

+χ04[a(3α10)+b(σ211α+33)+c(10α262σ2)]+χ06[b(3α10)+c(σ211α+33)]+c(3α10)χ08}


RHS (1st term)

=

χ02d2dχ02[(1χ02)(a+bχ02+cχ04)]

 

=

χ02d2dχ02[a+(ba)χ02+(cb)χ04cχ06]

 

=

χ02ddχ0[2(ba)χ0+4(cb)χ036cχ05]

 

=

χ02[2(ba)+12(cb)χ0230cχ04]

 

=

(ba)χ0+6(cb)χ0315cχ05

 

=

χ0(2χ02)2{(44χ02+χ04)[(ba)+6(cb)χ0215cχ04]}

 

=

χ0(2χ02)2{[(4b4a)+(24c24b)χ0260cχ04]+[(4b+4a)χ02+(24c+24b)χ04+60cχ06]+[(ba)χ04+6(cb)χ0615cχ08]}

 

=

χ0(2χ02)2{(4b4a)+[(24c24b)+(4b+4a)]χ02+[60c+(24c+24b)+(ba)]χ04+[60c+6(cb)]χ0615cχ08}

 

=

χ0(2χ02)2{(4b4a)+[24c28b+4a]χ02+[84c+25ba]χ04+[66c6b]χ0615cχ08}


RHS (2nd term)

=

ddχ0[(1χ02)(4χ02)(2χ02)1(a+bχ02+cχ04)]

 

=

(2χ02)1ddχ0[(45χ02+χ04)(a+bχ02+cχ04)]

 

 

+(45χ02+χ04)(a+bχ02+cχ04)ddχ0[(2χ02)1]

 

=

(2χ02)1ddχ0[4a+χ02(4b5a)+χ04(4c5b+a)+χ06(b5c)+cχ08]

 

 

+[4a+χ02(4b5a)+χ04(4c5b+a)+χ06(b5c)+cχ08]ddχ0[(2χ02)1]

 

=

(2χ02)2{(2χ02)[χ0(8b10a)+χ03(16c20b+4a)+χ05(6b30c)+8cχ07]

 

 

+2χ0[4a+χ02(4b5a)+χ04(4c5b+a)+χ06(b5c)+cχ08]}

 

=

χ0(2χ02)2{[(16b20a)+χ02(32c40b+8a)+χ04(12b60c)+16cχ06]

 

 

[χ02(8b10a)+χ04(16c20b+4a)+χ06(6b30c)+8cχ08]

 

 

+[8a+χ02(8b10a)+χ04(8c10b+2a)+χ06(2b10c)+2cχ08]}

 

=

χ0(2χ02)2{[(16b20a)+8a]+χ02[(32c40b+8a)+(10a8b)+(8b10a)]

 

 

+χ04[(12b60c)+(20b4a16c)+(8c10b+2a)]+χ06[16c+(30c6b)+(2b10c)]6cχ08}

 

=

χ0(2χ02)2{[16b12a]+χ02[(32c40b+8a)]+χ04[2a+22b68c]+χ06[36c4b]6cχ08}


So, the coefficients of each even power of χ0n are:

χ00   :  

a(10α262σ2)(4b4a)[16b12a]=a(10α102σ2)20b

χ02   :   [a(σ211α+33)+b(10α262σ2)][24c28b+4a][(32c40b+8a)]

=[a(σ211α+21)+b(10α+422σ2)]56c

χ04   :   [a(3α10)+b(σ211α+33)+c(10α262σ2)][84c+25ba][2a+22b68c]

=[a(3α7)+b(σ211α14)+c(10α+1262σ2)]

χ06   :   [b(3α10)+c(σ211α+33)][66c6b][36c4b]

=[b(3α)+c(σ211α69)]

χ08   :  

c(3α10)+15c+6c=c[3α+11]

The expressions for the coefficients presented in this table exactly match the entire set of expressions derived earlier, except for the adopted sign convention — every term in this second derivation has the opposite sign to the corresponding term in the earlier derivation.

Conjecture

Returning to the generic formulation derived earlier, we have,

σ2(ρ0ρc)x

=

(P0Pc)1χ04ddχ0(χ04x')+ddχ0(P0Pc)1χ0αddχ0(χ0αx).

Now, suppose that the expression on the RHS is of the form,

RHS

=

udv+vdu,

where u(P0/Pc)? Then the function,

v1χ0αddχ0(χ0αx),

and the eigenvector, x, must satisfy both of the relations:

Relation I

:

σ2(ρ0ρc)x=ddχ0[(P0Pc)1χ0αddχ0(χ0αx)]

Relation II

:

ddχ0[1χ0αddχ0(χ0αx)]=1χ04ddχ0(χ04x')

The validity (or not) of this conjecture can be tested against both configurations whose --- ABANDON!

Exploration

Compare LAWE to Hydrostatic Balance Condition

Returning to the generic formulation derived earlier, we have,

σ2(ρ0ρc)x

=

(P0Pc)1χ04ddχ0(χ04x')+ddχ0(P0Pc)1χ0αddχ0(χ0αx).

Dividing this entire expression through by (P0/Pc)x gives,

σ2(ρ0ρc)(P0Pc)1

=

1xχ04ddχ0(χ04x')+ddχ0[ln(P0Pc)]1xχ0αddχ0(χ0αx).

 

=

(x'x)ddχ0[ln(χ04x')]+ddχ0[ln(P0Pc)]ddχ0[ln(χ0αx)].

Now, let's step aside from the LAWE and look directly at the differential relationship between the mass-density and the pressure, as dictated by combining the two principal governing relations, the

Hydrostatic Balance

1ρdPdr=dΦdr ,

and,

Poisson Equation

1r2ddr(r2dΦdr)=4πGρ .

In combination, we have,

4πGρ0

=

1r02ddr0[r02ρ0dP0dr0]

4πGρ0(R2ρcPc)

=

1χ02ddχ0[χ02(ρ0/ρc)ddχ0(P0Pc)]

[4πGρcτSSC2](ρ0ρc)

=

(ρ0ρc)11χ02ddχ0[χ02ddχ0(P0Pc)]+ddχ0(P0Pc)ddχ0(ρ0ρc)1

[4πGρcτSSC2](ρ0ρc)2(P0Pc)1

=

1χ02(P0/Pc)ddχ0[χ02ddχ0(P0Pc)]+ddχ0[ln(P0Pc)]ddχ0[ln(ρ0ρc)1]

 

=

(p'p)1χ02p'ddχ0[χ02p']+dln(p)dχ0ddχ0[ln(ρ0ρc)1]

 

=

dln(p)dχ0ddχ0[ln(χ02p')]+dln(p)dχ0ddχ0[ln(ρ0ρc)1],

where,

p'

ddχ0(P0Pc).

Let's compare the form of this "equilibrium" relation with the form of the LAWE just constructed:

[4πGρcτSSC2](ρ0ρc)2(P0Pc)1

=

(p'p)ddχ0[ln(χ02p')]+dln(p)dχ0ddχ0[ln(ρ0ρc)1]

 

versus

 

σ2(ρ0ρc)(P0Pc)1

=

(x'x)ddχ0[ln(χ04x')]+dln(p)dχ0ddχ0[ln(χ0αx)]

I like this layout because it unveils similarities in the way the differential operators interact with the functions that describe the radial profiles of variables — specifically, the mass-density, the pressure, and the fractional radial displacement, x, during pulsations. However, it is not yet obvious how best to translate between the two differential equations in order to aid in solving for the unknown variable, x(χ0).

Dabbling with Equilibrium Condition

In the meantime, I've found it instructive to play with the first of these two expressions to see how it might be restructured in order to most directly confirm that it is satisfied by the expressions presented in Table 1. Adopting the shorthand notation,

Γ4πGρcτSSC2         and         ϖρ0ρc,

and multiplying the "equilibrium" relation through by (ϖp), we have,

Γϖ3

=

ϖp'{1χ02p'ddχ0(χ02p')1ϖdϖdχ0}

 

=

p'ϖ'ϖdp'dχ02ϖp'χ0

 

=

p'χ0[χ0ϖ'2ϖ]ϖdp'dχ0;

or,

Γϖ2

=

p'χ0ϖ[χ0ϖ'2ϖ]dp'dχ0.

Specific Cases

Case 1 (Parabolic):

ϖ=1χ02

           

ϖ'=2χ0

p'=5χ0+8χ033χ05=χ0(1χ02)(5+3χ02)

           

p'χ0ϖ=5+3χ02.

 

Also, note:

d(p')dχ0=5+24χ0215χ04.

For the parabolic case, therefore, the RHS of the "equilibrium" expression is,

RHS

=

(5+3χ02)[2χ022(1χ02)](5+24χ0215χ04)

 

=

(106χ02)+(524χ02+15χ04)

 

=

15(12χ02+χ04),

which, indeed, matches the LHS of the "equilibrium" relation, if,

Γ=15                τSSC2=154πGρc.

This has all worked satisfactorily because, as presented above, this is the correct value of τSSC2 in the case of the parabolic density distribution.


Case 2 (Linear):

ϖ=1χ0

           

ϖ'=1

p'=125[4χ0+7χ023χ03]

           

p'χ0ϖ=125(4+3χ0).

 

Also, note:

d(p')dχ0=125[4+14χ09χ02].

For the linear case, therefore, the RHS of the "equilibrium" expression is,

RHS

=

125(4+3χ0)[χ02(1χ0)]125(4+14χ09χ02)

 

=

125[(43χ0)(2χ0)+(414χ0+9χ02)]

 

=

125(1224χ0+12χ02)

 

=

24325(12χ0+χ02),

which, indeed, matches the LHS of the "equilibrium" relation, if,

Γ=24325                τSSC2=22325πGρc.

This has all worked satisfactorily because, as presented above, this is the correct value of τSSC2 in the case of the linear density distribution.


Case 3 (n = 1 polytrope):

ϖ=sin(πχ0)πχ0

           

ϖ'=cos(πχ0)χ0sin(πχ0)πχ02

p'=2sin(πχ0)(π2χ03)[πχ0cos(πχ0)sin(πχ0)]

           

p'χ0ϖ=2(πχ03)[πχ0cos(πχ0)sin(πχ0)].

Also, note:      d(p')dχ0

=

[2πcos(πχ0)(π2χ03)6sin(πχ0)(π2χ04)][πχ0cos(πχ0)sin(πχ0)]+2sin(πχ0)(π2χ03)[πcos(πχ0)π2χ0sin(πχ0)πcos(πχ0)]

 

=

1π2χ04{[2πχ0cos(πχ0)6sin(πχ0)][πχ0cos(πχ0)sin(πχ0)]+2χ0sin(πχ0)[π2χ0sin(πχ0)]}

 

=

1π2χ04{2π2χ02cos2(πχ0)8πχ0sin(πχ0)cos(πχ0)+6sin2(πχ0)2π2χ02sin2(πχ0)}

 

=

2π2χ04{3sin2(πχ0)4πχ0sin(πχ0)cos(πχ0)+π2χ02[12sin2(πχ0)]}.

For the case of an n = 1 polytropic configuration, therefore, the equilibrium requirement is,

Γϖ2

=

p'χ0ϖ[χ0ϖ'2ϖ]dp'dχ0

 

=

2(πχ03)[πχ0cos(πχ0)sin(πχ0)][cos(πχ0)sin(πχ0)πχ02sin(πχ0)πχ0]

 

 

2π2χ04{3sin2(πχ0)4πχ0sin(πχ0)cos(πχ0)+π2χ02[12sin2(πχ0)]}

 

=

2(π2χ04){[πχ0cos(πχ0)sin(πχ0)][πχ0cos(πχ0)3sin(πχ0)]

 

 

3sin2(πχ0)+4πχ0sin(πχ0)cos(πχ0)π2χ02[12sin2(πχ0)]}

 

=

2(π2χ04){3sin2(πχ0)4πχ0sin(πχ0)cos(πχ0)+(πχ0)2[1sin2(πχ0)]

 

 

3sin2(πχ0)+4πχ0sin(πχ0)cos(πχ0)π2χ02[12sin2(πχ0)]}

 

=

2(π2χ04){(πχ0)2sin2(πχ0)}

 

=

2π2[sin(πχ0)πχ0]2

So, the equilibrium condition is satisfied if,

Γ=2π2                τSSC2=2π24πGρc=π2Gρc.

This has all worked satisfactorily because, as presented in a separate chapter discussion, this is the correct value of τSSC2 in the case of an n = 1 polytropic configuration.

Dabbling with LAWE

Now, let's experiment with the LAWE as presented above, that is,

σ2(ρ0ρc)(P0Pc)1

=

(x'x)ddχ0[ln(χ04x')]+dln(p)dχ0ddχ0[ln(χ0αx)].

After multiplying though by (p), this expression may be written as,

σ2ϖ

=

px[dx'dχ0+4x'χ0]+αp'χ0[1+χ0x'αx]

 

=

(px)x'+p[4χ0]x'x+p'[x'x]+αp'χ0

[σ2ϖ+αp'χ0]x

=

px'+[4pχ0+p']x'

0

=

px'+[4p+χ0p']x'χ0+[σ2ϖ+αp'χ0]x.

(We could have, perhaps, obtained this expression in a more direct fashion had we started directly from the form of the LAWE derived earlier.)

Specific Case Attempts
Uniform Density

Case 0 (Uniform density):

ϖ

=

1;

p

=

1χ02;

αp'χ0

=

2α.

For the uniform-density case, therefore, the the LAWE becomes,

σ2

=

(1χ02)x[dx'dχ0+4x'χ0]2α[1+χ0x'αx]

(2ασ2)x

=

(1χ02)[dx'dχ0+4x'χ0]2χ0x'

 

=

(1χ02)dx'dχ0+(1χ02)[4x'χ0]2χ0x'

 

=

(1χ02)dx'dχ0+2x'χ0(23χ02),

where, as defined above,

α34γg.

Mode 3

Try an eigenfunction of the form,

x=a+bχ02+cχ04,

in which case,

2x'χ0=2χ0(2bχ0+4cχ03)=4b+8cχ02         and         x'=2b+12cχ02.

In order for this to be a solution, we must have,

(2ασ2)(a+bχ02+cχ04)

=

(1χ02)(2b+12cχ02)+(23χ02)(4b+8cχ02)

 

=

(2b+12cχ02)χ02(2b+12cχ02)+2(4b+8cχ02)3χ02(4b+8cχ02)

 

=

10b+χ02(12c2b+16c12b)χ04(12c+24c)

 

=

10b+χ02(28c14b)χ04(36c).


So, the coefficients of each even power of χ0n are:

χ00   :  

a𝔉+10b

χ02   :  

b𝔉14b+28c

χ04   :  

c[𝔉36]

where, following Sterne's (1937) presentation,

𝔉σ22α.

In order for all three of the coefficients to be zero, we must have:

First:     𝔉=36;

Second:     22b=28cc=(11/14)b;

Third:     36a=10bb=(18/5)a.

Hence, choosing a=1 implies: b=18/5        and         c=(11/7)(9/5)=+99/35. This precisely matches the "j = 2" mode identified by Sterne.


Parabolic

Case 1 (Parabolic):

ϖ=1χ02

           

ϖ'=2χ0

p=12(1χ02)2(2χ02)

 

 

p'=5χ0+8χ033χ05=χ0(1χ02)(5+3χ02)

           

αp'χ0=α(1χ02)(5+3χ02).


For the parabolic case, therefore, the the LAWE becomes,

0

=

px'+[4p+χ0p']x'χ0+[σ2ϖ+αp'χ0]x

 

=

12ϖ2(2χ02)x'+[2ϖ2(2χ02)+χ02ϖ(5+3χ02)]x'χ0+[σ2ϖ+αϖ(5+3χ02)]x

 

=

ϖ2{ϖ(2χ02)x'+[4ϖ(2χ02)+χ02(10+6χ02)]x'χ0+[𝔎+6αχ02]x}

 

=

ϖ2{(23χ02+χ04)x'+[822χ02+10χ04]x'χ0+[𝔎+6αχ02]x}

where,

𝔎2(σ25α).

Mode Inverse

Try an eigenfunction of the form,

x=(1+aχ02)β=(1+aχ02)(β+2)(1+2aχ02+a2χ04),

in which case,

x'

=

2aβχ0(1+aχ02)β1;

 

=

2aβ(χ0+aχ03)(1+aχ02)(β+2);

x'

=

2aβ(1+aχ02)β12aβχ0[2a(β+1)χ0(1+aχ02)β2]

 

=

2aβ(1+aχ02)(β+2)[(1+aχ02)2a(β+1)χ02]

 

=

2aβ(1+aχ02)(β+2)[1a(2β+1)χ02]

In order for this to be a solution, we must have,

0

=

(23χ02+χ04)x'+[822χ02+10χ04]x'χ0+[𝔎+6αχ02]x

 

=

2aβ[1a(2β+1)χ02](23χ02+χ04)2aβ(1+aχ02)[822χ02+10χ04]+[𝔎+6αχ02](1+2aχ02+a2χ04)

 

=

2aβ(2+3χ02χ04)+2a2β(2β+1)(2χ023χ04+χ06)

 

 

+2aβ[8+22χ0210χ04]+2a2β[8χ02+22χ0410χ06]

 

 

+𝔎(1+2aχ02+a2χ04)+6α(χ02+2aχ04+a2χ06)


So, the coefficients of each even power of χ0n are:

χ00   :  

𝔎20aβ

χ02   :  

50aβ+4a2β(2β3)+6α+2a𝔎

χ04   :  

22aβ+2a2β(196β)+12aα+a2𝔎

χ06   :  

2a2β(2β9)+6a2α


Mode 3P

Try an eigenfunction of the form,

x=a+bχ02+cχ04,

in which case,

x'χ0=1χ0(2bχ0+4cχ03)=2b+4cχ02         and         x'=2b+12cχ02.

In order for this to be a solution, we must have,

0

=

ϖ2{(23χ02+χ04)(2b+12cχ02)+(822χ02+10χ04)(2b+4cχ02)+(𝔎+6αχ02)(a+bχ02+cχ04)}

 

=

ϖ2{(4b+24cχ026bχ0236cχ04+2bχ04+12cχ06)+(16b+32cχ0244bχ0288cχ04+20bχ04+40cχ06)

 

 

+(a𝔎+b𝔎χ02+c𝔎χ04+6aαχ02+6bαχ04+6cαχ06)}

 

=

ϖ2[(20b+a𝔎)χ00+(24c6b+32c44b+b𝔎+6aα)χ02+(36c+2b88c+20b+c𝔎+6bα)χ04+(12c+40c+6cα)χ06]


So, the coefficients of each even power of χ0n are:

χ00   :  

20b+a𝔎

χ02   :  

56c+(𝔎50)b+6aα

χ04   :  

b(22+6α)+c(𝔎124)

χ06   :  

c(52+6α)


This is disappointing, as it does not result in nonzero coefficient values.

Polytrope

Case 3 (n = 1 polytrope):

ϖ=sin(πχ0)πχ0

           

ϖ'=cos(πχ0)χ0sin(πχ0)πχ02

p=[sin(πχ0)πχ0]2=ϖ2

 

 

p'=2ϖ(πχ02)[πχ0cos(πχ0)sin(πχ0)]

           

αp'χ0=2αϖ(πχ03)[πχ0cos(πχ0)sin(πχ0)].


For the n = 1 polytropic case, therefore, the the LAWE becomes,

0

=

px'+[4p+χ0p']x'χ0+[σ2ϖ+αp'χ0]x

 

=

[sin(πχ0)πχ0]ϖx'+{4[sin(πχ0)πχ0]+2(πχ0)[πχ0cos(πχ0)sin(πχ0)]}ϖx'χ0

 

 

+{σ2+2α(πχ03)[πχ0cos(πχ0)sin(πχ0)]}ϖx

 

=

ϖπχ02{[sin(πχ0)]χ0x'+[2sin(πχ0)+2πχ0cos(πχ0)]x'+{(πχ02)σ2+2αχ01[πχ0cos(πχ0)sin(πχ0)]}x}

Exploration2

Let's begin with the LAWE written in the following form (see, for example, the related context discussion):

σ2𝒢σ

=

(Pρ)1x4ddx(x4𝒢σ')+(P'ρ)1xαddx(xα𝒢σ).

One advantage of beginning with this construction is that — as the following table shows — it might be reasonable to expect in general that both pre-factors — (P/ρ) and (P'/ρ) — will have a relatively simple mathematical form. In addition, however, it appears as though both terms on the RHS want to be logarithmic derivatives.

Properties of Analytically Defined Astrophysical Structures
Model ρ(x) [P(x)ρ(x)] [P'(x)ρ(x)]
Uniform-density 1 1x2 2x
Linear 1x (1x)(1+2x95x2) 125x(43x)
Parabolic 1x2 (1x2)(112x2) x(53x2)
n=1 Polytrope sinx sinxx 2x[cosxsinxx]

New Form of LAWE

Multiplying the LAWE through by [ρ/(P𝒢σ)] gives,

σ2(ρP)

=

(𝒢σ'𝒢σ)1(x4𝒢σ')ddx(x4𝒢σ')+(P'P)1(xα𝒢σ)ddx(xα𝒢σ)

 

=

dln𝒢σdxdln(x4𝒢σ')dx+dlnPdxdln(xα𝒢σ)dx

 

=

dln𝒢σdx[dln(x4)dx+dln(𝒢σ')dx]+dlnPdx[dln(xα)dx+dln(𝒢σ)dx]

 

=

dln𝒢σdx[dln(x4)dx+dln(𝒢σ')dx+dlnPdx]+dlnPdx[dln(xα)dx]

[σ2(ρP)+dlnPdxdln(xα)dx]

=

dln𝒢σdx[dln(x4P𝒢σ')dx]

𝒢σP[σ2ρ+αP'x]

=

1x4P[d(x4P𝒢σ')dx]

d(x4P𝒢σ')dx

=

𝒢σ[σ2x4ρ+αx3P']

 

=

x4ρ𝒢σ[σ2+αP'xρ].

Trial Logarithmic Eigenfunction

Defining,

(x)[σ2+αP'xρ],

the LAWE becomes,

d(x4P𝒢σ')dx

=

x4ρ𝒢σ.

First Try

Let's try an eigenvector of the form,

𝒢σ

=

A(x)lnP+B(x),

in which case,

𝒢σ'

=

A'lnP+AP'P+B'

x4P𝒢σ'

=

x4[PA'lnP+AP'+PB']

LHSddx[x4P𝒢σ']

=

x4[PA'lnP+PA'lnP+PA'(P'P)+AP'+PB'+AP'+PB']

 

 

+4x3[PA'lnP+AP'+PB']

 

=

x4{lnP[PA'+PA'+4xPA']+[A'P'+AP'+PB'+AP'+PB'+4x(AP'+PB')]}.

Now, in order for this expression to match the RHS of the LAWE, we must have, first of all,

A

=

1ρ[PA'+PA'+4xPA'];

and, second,

B

=

1ρ[A'P'+AP'+PB'+AP'+PB'+4x(AP'+PB')].

Case 1 (Parabolic):

(x)[σ2α(53x2)]=f0+f2x2,

where,

f0σ25α         and         f23α.

Also, the first condition is,

2(f0+f2x2)A

=

2(5+3x2)xA'+(23x2+x4)[A'+4A'x].

So, if we adopt a polynomial expression for the function, A(x), of the form,

A(x)=a0+a2x2+a4x4,


A'=2a2x+4a4x3         and         A'=2a2+12a4x2,

the condition becomes,

2(f0+f2x2)(a0+a2x2+a4x4)

=

(10+6x2)(2a2x2+4a4x4)+(23x2+x4)[(2a2+12a4x2)+4(2a2+4a4x2)]

(f0+f2x2)(a0+a2x2+a4x4)

=

(106x2)(a2x2+2a4x4)(23x2+x4)(5a2+14a4x2)

So, the coefficients of each even power of χ0n are:

χ00   :  

f0a0+10a2

χ02   :  

f0a2+f2a010a2+28a415a2

χ04   :  

f0a4+f2a220a4+6a242a4+5a2

χ06   :  

f2a4+12a4+14a4

This does not seem to work.

Another Trial

Start with a form of the LAWE found midway through the above derivation, namely,

[σ2(ρP)+dlnPdxdln(xα)dx]

=

dln𝒢σdx[dln(x4P𝒢σ')dx];

and multiplying through by x2 gives,

[σ2(x2ρP)+αdlnPdlnx]

=

dln𝒢σdlnx[dln(x4P𝒢σ')dlnx]

dlnPdlnx[σ2(P'xρ)1+α]

=

dln𝒢σdlnx[dln(𝒢σ')dlnx+dln(P)dlnx+dln(x4)dlnx]

dlnPdlnx[α+σ2(P'xρ)1+dln𝒢σdlnx]

=

dln𝒢σdlnx[dln(𝒢σ')dlnx+4].

Note that,

dln𝒢σdlnx

=

x𝒢σ'𝒢σ;

dln𝒢σdlnxdln(𝒢σ')dlnx

=

x2𝒢σ'𝒢σ.

Consider Parabolic Case

In the case of a parabolic density distribution, the LAWE becomes,

2x2(53x2)(1x2)(2x2)[ασ2(53x2)1+x𝒢σ'𝒢σ]

=

(x2𝒢σ'𝒢σ)+4x𝒢σ'𝒢σ

2(1x2)(2x2)[(α+x𝒢σ'𝒢σ)(53x2)σ2]

=

(𝒢σ'𝒢σ)+4x2x𝒢σ'𝒢σ


Let's try,

𝒢σ

=

(a0+a2x2)n(b0+b2x2)m,

which implies,

𝒢σ'

=

n(a0+a2x2)n1(2a2x)(b0+b2x2)m+m(a0+a2x2)n(b0+b2x2)m1(2b2x)

x𝒢σ'𝒢σ

=

n(a0+a2x2)1(2a2x2)+m(b0+b2x2)1(2b2x2)

 

=

2x2(a0+a2x2)(b0+b2x2)[na2(b0+b2x2)+mb2(a0+a2x2)]

 

=

2x2(a0+a2x2)(b0+b2x2)[(na2b0+mb2a0)+(na2b2+mb2a2)x2],

and,

𝒢σ'

=

nm(a0+a2x2)n1(2a2x)(b0+b2x2)m1(2b2x)+n(a0+a2x2)n1(2a2)(b0+b2x2)m+n(n1)(a0+a2x2)n2(2a2x)2(b0+b2x2)m

 

 

+mn(a0+a2x2)n1(2a2x)(b0+b2x2)m1(2b2x)+m(a0+a2x2)n(b0+b2x2)m1(2b2)+m(m1)(a0+a2x2)n(b0+b2x2)m2(2b2x)2

𝒢σ'𝒢σ

=

8nma2b2x2(a0+a2x2)1(b0+b2x2)1+n2a2(a0+a2x2)1+n(n1)4a22x2(a0+a2x2)2+m2b2(b0+b2x2)1+m(m1)4b22x2(b0+b2x2)2

 

=

2na2(b0+b2x2)+2mb2(a0+a2x2)(a0+a2x2)(b0+b2x2)+[4n(n1)a22(a0+a2x2)2+8nma2b2(a0+a2x2)(b0+b2x2)+4m(m1)b22(b0+b2x2)2]x2

So, we have for the LAWE:

LHS

=

2(1x2)(2x2)[(α+x𝒢σ'𝒢σ)(53x2)σ2]

 

=

2(1x2)(2x2)(a0+a2x2)(b0+b2x2){[α(a0+a2x2)(b0+b2x2)+2x2(na2b0+mb2a0)+2x4(na2b2+mb2a2)](53x2)

 

 

σ2(a0+a2x2)(b0+b2x2)};

RHS

=

(𝒢σ'𝒢σ)+4x2x𝒢σ'𝒢σ

 

=

2na2(b0+b2x2)+2mb2(a0+a2x2)(a0+a2x2)(b0+b2x2)+[4n(n1)a22(a0+a2x2)2+8nma2b2(a0+a2x2)(b0+b2x2)+4m(m1)b22(b0+b2x2)2]x2

 

 

+8(a0+a2x2)(b0+b2x2)[(na2b0+mb2a0)+(na2b2+mb2a2)x2]

 

=

1(a0+a2x2)(b0+b2x2){2na2(b0+b2x2)+2mb2(a0+a2x2)+8(na2b0+mb2a0)+8(na2b2+mb2a2)x2

 

 

+[8nma2b2+4n(n1)a22(b0+b2x2)(a0+a2x2)+4m(m1)b22(a0+a2x2)(b0+b2x2)]x2}.

Putting these together gives,

0

=

[α(a0+a2x2)(b0+b2x2)+2x2(na2b0+mb2a0)+2x4(na2b2+mb2a2)](53x2)σ2(a0+a2x2)(b0+b2x2)

 

 

[na2(b0+b2x2)+mb2(a0+a2x2)+4(na2b0+mb2a0)+4(na2b2+mb2a2)x2+4nma2b2x2](1x2)(2x2)

 

 

(1x2)(2x2)(a0+a2x2)(b0+b2x2)[2n(n1)a22(b0+b2x2)2+2m(m1)b22(a0+a2x2)2]x2.


First Guess

Now, if we are very lucky, we will find that,

(a0+a2x2)=(1x2)           a0=1      and      a2=1;

and, simultaneously,

(b0+b2x2)=(2x2)           b0=2      and      b2=1.

In this case, the fractional coefficient in the last term of the LAWE will become unity and the LAWE becomes,

0

=

[α(1x2)(2x2)2x2(2n+m)+2x4(n+m)](53x2)

 

 

[σ2n(2x2)m(1x2)4(2n+m)+4(n+m)x2+4nmx2](1x2)(2x2)

 

 

[2n(n1)(2x2)2+2m(m1)(1x2)2]x2

 

=

[2αx2(3α+4n+2m)+x4(α+2n+2m)](53x2)

 

 

+[(σ2+10n+5m)x2(5n+5m+4nm)](23x2+x4)

 

 

{[8n(n1)+2m(m1)][8n(n1)+4m(m1)]x2+[2n(n1)+2m(m1)]x4}x2.

So, the coefficients of each even power of χ0n are:

χ00   :  

10α+2(σ2+10n+5m)

χ02   :  

6α5(3α+4n+2m)2(5n+5m+4nm)3(σ2+10n+5m)[8n(n1)+2m(m1)]

χ04   :  

5(α+2n+2m)+3(3α+4n+2m)+(σ2+10n+5m)+3(5n+5m+4nm)+[8n(n1)+4m(m1)]

χ06   :  

3(α+2n+2m)(5n+5m+4nm)[2n(n1)+2m(m1)]


Now let's begin simplification. The x0 coefficient implies,

(σ2+10n+5m)=5α.

Hence,

χ02   :  

6α5(4n+2m)2(5n+5m+4nm)[8n(n1)+2m(m1)]

χ04   :  

9α+5(2n+2m)+3(4n+2m)+3(5n+5m+4nm)+[8n(n1)+4m(m1)]

χ06   :  

3α3(2n+2m)(5n+5m+4nm)[2n(n1)+2m(m1)]

Using the x6 coefficient to define α, that is, setting,

3α={3(2n+2m)(5n+5m+4nm)[2n(n1)+2m(m1)]},

means that the other two coefficient expressions are,

χ02   :  

6(2n+2m)+2(5n+5m+4nm)+4[n(n1)+m(m1)]5(4n+2m)2(5n+5m+4nm)[8n(n1)+2m(m1)]

χ04   :  

9(2n+2m)3(5n+5m+4nm)6[n(n1)+m(m1)]+5(2n+2m)+3(4n+2m)+3(5n+5m+4nm)+[8n(n1)+4m(m1)]

The only question remaining is, what pair of values for (n,m) result in both of these expressions going to zero? Simplifying the first expression gives,

0

=

6(2n+2m)+2(5n+5m+4nm)+4[n(n1)+m(m1)]5(4n+2m)2(5n+5m+4nm)[8n(n1)+2m(m1)]

 

=

2m8n4n(n1)+2m(m1)

 

=

2[m22n(n+1)].

Simplifying the second expression gives,

0

=

9(2n+2m)3(5n+5m+4nm)6[n(n1)+m(m1)]+5(2n+2m)+3(4n+2m)+3(5n+5m+4nm)+[8n(n1)+4m(m1)]

 

=

4n2m+2n(n1)2m(m1)

 

=

2[n(n+1)m2]

Okay. Because it is not possible for both of these last two constraints to be simultaneously satisfied, I conclude that this last, specific eigenfunction guess is incorrect.


Second Guess

Let's try again, keeping the same values of the b0 and b2 — that is,

(b0+b2x2)=(2x2)           b0=2      and      b2=1

— but leaving the values of a0 and a2 unspecified. In this case, the LAWE becomes,

0

=

[α(a0+a2x2)(2x2)+2x2(2na2ma0)2x4(na2+ma2)](53x2)(a0+a2x2)σ2(a0+a2x2)2(2x2)

 

 

[na2(2x2)m(a0+a2x2)+4(2na2ma0)4(na2+ma2)x24nma2x2](1x2)(2x2)(a0+a2x2)

 

 

[2n(n1)a22(2x2)2+2m(m1)(a0+a2x2)2]x2(1x2)

 

=

{α[2a0]+x2[(4na22ma0)+α(2a2a0)]x4[(2na2+2ma2)+a2α]}[5a0+(5a23a0)x23a2x4]σ2[2a0+(2a2a0)x2a2x4](a0+a2x2)

 

 

+[(5ma010na2)+(4nma2+5na2+5ma2)x2](1x2)[2a0+(2a2a0)x2a2x4]

 

 

{[8n(n1)a22+2m(m1)a02]+[8n(n1)a22+4m(m1)a0a2]x2+[2n(n1)a22+2m(m1)a22]x4}x2(1x2)

 

=

{α[2a0]+x2[(4na22ma0)+α(2a2a0)]x4[(2na2+2ma2)+a2α]}[5a0+(5a23a0)x23a2x4]

 

 

σ2{2a02+[2a0a2+a0(2a2a0)]x2+[a2(2a2a0)a0a2]x4a22x6}

 

 

+{[(5ma010na2)]+[(4nma2+5na2+5ma2)(5ma010na2)]x2[4nma2+5na2+5ma2]x4}[2a0+(2a2a0)x2a2x4]

 

 

{[8n(n1)a22+2m(m1)a02]x2+[8n(n1)a22+4m(m1)a0a2]x4+[2n(n1)a22+2m(m1)a22]x6}(1x2).


So, the coefficients of each even power of xn are:

x0   :  

10a02α2a02σ2+2a0[(5ma010na2)]

x2   :   5a0[(4na22ma0)+α(2a2a0)]+α[2a0](5a23a0)σ2[2a0a2+a0(2a2a0)]

+2a0[(4nma2+5na2+5ma2)(5ma010na2)]+(2a2a0)[(5ma010na2)][8n(n1)a22+2m(m1)a02]

x4   :   5a0[(2na2+2ma2)+a2α]+(5a23a0)[(4na22ma0)+α(2a2a0)]6a0a2ασ2[a2(2a2a0)a0a2]

2a0[4nma2+5na2+5ma2]+(2a2a0)[(4nma2+5na2+5ma2)(5ma010na2)]a2(5ma010na2)

[8n(n1)a22+4m(m1)a0a2]+[8n(n1)a22+2m(m1)a02]

x6   :   3a2[(4na22ma0)+α(2a2a0)](5a23a0)[(2na2+2ma2)+a2α]+σ2a22

(2a2a0)[4nma2+5na2+5ma2]a2[(4nma2+5na2+5ma2)(5ma010na2)]

[2n(n1)a22+2m(m1)a22]+[8n(n1)a22+4m(m1)a0a2]

x8   :  

3a2a2α+a2[4nma2+11na2+11ma2]+[2n(n1)a22+2m(m1)a22]


After simplification:

x0   :  

10a02α2a02σ2+10ma0220na0a2

x2   :   α(20a0a211a02)σ2[4a0a2a02]

+60na0a220na22+20ma0a225ma02+8nma0a2[8n(n1)a22+2m(m1)a02]

x4   :   α(10a2222a0a2+3a02)σ2(2a222a0a2)47na0a2+60na2250ma0a2+11ma02+10ma2212nma0a2+8nma22

+16n(n1)a224m(m1)a0a2+2m(m1)a02

x6   :   α(11a22+6a0a2)+σ2a2247na22+11na0a2+22ma0a225ma2212nma22+4nma0a2

10n(n1)a222m(m1)a22+4m(m1)a0a2

x8   :  

{3α+[4nm+11n+11m]+[2n(n1)+2m(m1)]}a22



Third Guess

Let's try again, keeping the same values of the b0 and b2 — that is,

(b0+b2x2)=(2x2)           b0=2      and      b2=1

— but leaving the values of a0 and a2 unspecified. In this case, the LAWE becomes,

0

=

[α(a0+a2x2)(2x2)+2x2(2na2ma0)2a2x4(n+m)](53x2)σ2(a0+a2x2)(2x2)

 

 

+[na2(2x2)+m(a0+a2x2)4(na22ma0)+4(na2+ma2)x2+4nma2x2](1x2)(2x2)

 

 

1(a0+a2x2)[2n(n1)a22(2x2)2+2m(m1)(a0+a2x2)2](1x2)x2

 

=

{[2a0α]+[α(a0+2a2)+(4na22ma0)]x2+[a2α2a2(n+m)]x4}(53x2)σ2[2a0+(a0+2a2)x2a2x4]

 

 

+[(10na2+5ma0)+(5ma2+5na2+4nma2)x2](23x2+x4)

 

 

1(a0+a2x2){[8n(n1)a22+2m(m1)a02]+[8n(n1)a22+4m(m1)a0a2]x2+[2n(n1)a22+2m(m1)a22]x4}(x2x4)

 

=

{[10a0α2a0σ2]+[5α(a0+2a2)+5(4na22ma0)6a0α+(a02a2)σ2]x2

 

 

+[5a2α10a2(n+m)3α(a0+2a2)3(4na22ma0)+a2σ2]x4+[3a2α+6a2(n+m)]x6}(a0+a2x2)

 

 

+{[2(10na2+5ma0)]+[2(5ma2+5na2+4nma2)3(10na2+5ma0)]x2

 

 

+[3(5ma2+5na2+4nma2)+(10na2+5ma0)]x4+(5ma2+5na2+4nma2)x6}(a0+a2x2)

 

 

{[8n(n1)a22+2m(m1)a02]+[8n(n1)a22+4m(m1)a0a2]x2+[2n(n1)a22+2m(m1)a22]x4}(x2x4)

 

=

{[10a0α2a0σ2]+[α(11a0+10a2)+(20na210ma0)+(a02a2)σ2]x2

 

 

+[α(3a011a2)+(22na2+6ma010a2m)+a2σ2]x4+[3a2α+6a2(n+m)]x6}(a0+a2x2)

 

 

+{[20na2+10ma0]+[10ma2+40na2+8nma215ma0]x2

 

 

+[15ma225na212nma2+5ma0]x4+[5ma2+5na2+4nma2]x6}(a0+a2x2)

 

 

{[8n(n1)a22+2m(m1)a02]x2+[8n(n1)a22+4m(m1)a0a2]x4+[2n(n1)a22+2m(m1)a22]x6}(1x2)

So, the coefficients of each even power of xn are:

x0   :  

a0[10a0α2a0σ2]+a0[20na2+10ma0]

x2   :   a0[α(11a0+10a2)+(20na210ma0)+(a02a2)σ2]+a2[10a0α2a0σ2]+a0[10ma2+40na2+8nma215ma0]

+a2[20na2+10ma0][8n(n1)a22+2m(m1)a02]

x4   :   a0[α(3a011a2)+(22na2+6ma010a2m)+a2σ2]+a2[α(11a0+10a2)+(20na210ma0)+(a02a2)σ2]

+a0[15ma225na212nma2+5ma0]+a2[10ma2+40na2+8nma215ma0]

[8n(n1)a22+4m(m1)a0a2]+[8n(n1)a22+2m(m1)a02]

x6   :   a0[3a2α+6a2(n+m)]+a2[α(3a011a2)+(22na2+6ma010a2m)+a2σ2]

a0[5ma2+5na2+4nma2]+a2[15ma225na212nma2+5ma0]

[2n(n1)a22+2m(m1)a22]+[8n(n1)a22+4m(m1)a0a2]

x8   :  

a2[3a2α+6a2(n+m)]+a2[5ma2+5na2+4nma2]+[2n(n1)a22+2m(m1)a22]


After simplification:

x0   :  

α(10a02)+σ2(2a02)20na0a2+10ma02

x2   :   α(11a02+20a0a2)+σ2(a024a0a2)+60na0a220na2225ma02+20ma0a2+8nma0a2

[8n(n1)a22+2m(m1)a02]

x4   :   α(10a2222a0a2+3a02)σ2(2a222a0a2)47na0a2+60na2250ma0a2+11ma02+10ma2212nma0a2+8nma22

+16n(n1)a224m(m1)a0a2+2m(m1)a02

x6   :   α(6a0a211a22)+σ2(a22)+11na0a2+22ma0a247na2225ma2212nma22+4nma0a2

10n(n1)a222m(m1)a22+4m(m1)a0a2

x8   :  

a2[3a2α+6a2(n+m)]+a2[5ma2+5na2+4nma2]+[2n(n1)a22+2m(m1)a22]

See Also

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |