StabilityVariationalPrinciple: Difference between revisions

From jetwiki
Jump to navigation Jump to search
 
Line 335: Line 335:
====Old Approach====
====Old Approach====


As has been developed in, for example, our [[SSCpt1/Virial/PolytropesEmbedded/FirstEffortAgain#Review|accompanying review]], we adopt the following normalizations:
As has been developed in, for example, our [[SSC/Virial/PolytropesEmbedded/FirstEffortAgain#Review|accompanying review]], we adopt the following normalizations:
<div align="center">
<div align="center">
<table border="0" cellpadding="5">
<table border="0" cellpadding="5">

Latest revision as of 15:15, 26 April 2022


Free-Energy Stability Analysis

Most General Case

Consider a free-energy function of the form,

𝒢

=

aχ1+bχ3/n+cχ3/j+𝒢0,

where, a,b,c, and 𝒢0 are constants, and the dimensionless configuration radius,

χRR0,

is defined in terms of a characteristic length, R0, which is likely to be different for each type of problem.

Virial Equilibrium

The first variation (first derivative) of this function with respect to the configuration's radius is,

d𝒢dχ

=

aχ2(3bn)χ3/n1(3cj)χ3/j1.

According to the virial theorem, the radius of an equilibrium configuration is obtained by setting d𝒢/dχ=0 and identifying the roots of the resulting equation. For example, identifying roots of the polynomial expression,

0

=

a3c(bnc)χeq(n3)/n(1j)χeq(j3)/j.

Stability

Let's rewrite the first variation of the free-energy function in terms of three coefficients (e,f,g) which, in general, we will permit to have different values from the original three (a,b,c),

𝒢'

=

eχ2(3fn)χ3/n1(3gj)χ3/j1.

The first variation (first derivative) of this function with respect to the configuration's radius — which, in effect, represents the second variation of the free-energy function — gives,

d𝒢'dχ

=

2eχ3+(3n+1)(3fn)χ3/n2+(3j+1)(3gj)χ3/j2.

If we evaluate this function by setting χ=χeq, the sign of the resulting expression should indicate stability (positive) or dynamical instability (negative); and the marginally unstable configuration is identified by the value of χeq for which d𝒢'/dχ=0.

Pressure-Truncated Configurations

Expectations

For pressure-truncated polytropes, we set j=1 and let n represent the chosen polytropic index. In this situation, then, we have,

Free-energy expression:      

𝒢

=

aχ1+bχ3/n+cχ3+𝒢0;

Virial equilibrium:      

0

=

a3c(bnc)χeq(n3)/n+χeq4;

Stability indicator:      

d𝒢'dχ

=

2eχ3+(3n+1)(3fn)χ3/n2+6gχ.

Hence, the (critical) equilibrium radius of the marginally unstable configuration is given by the expression,

6gχeq4

=

2e(3n+1)(3fn)χeq(n3)/n

 

=

2e[3f(n+3)n2](ncb)[a3c+χeq4]

6gχeq4+[3f(n+3)n2](ncb)χeq4

=

2e[3f(n+3)n2](ncb)[a3c]

[6g+3cf(n+3)nb]χeq4

=

2e[af(n+3)nb]

χeq4|crit

=

[2nbeaf(n+3)6nbg+3cf(n+3)].

Notice that, if (e,f,g)(a,b,c), this gives,

χeq4|crit

=

[2nbaab(n+3)6nbc+3cb(n+3)]

 

=

a32c[n3n+1].

Energies and Structural Form Factors

Old Approach

As has been developed in, for example, our accompanying review, we adopt the following normalizations:

Rnorm

=

[(GK)nMtotn1]1/(n3),

Pnorm

=

[K4nG3(n+1)Mtot2(n+1)]1/(n3),

ρnorm3Mtot4πRnorm3

=

34π[K3G3Mtot2]n/(n3),

Enorm

=

[KnG3Mtotn5]1/(n3).

Then, from separate summaries — both here and here — we can write,

Mr(x)Mtot

=

(ρcρ¯)eq(MlimitMtot)0x3x2[ρ(x)ρc]dx,

PeVEnorm

=

4π3(PePnorm)χ3,

WgravEnorm

=

χ1(ρcρ¯)eq(MlimitMtot)013x[Mr(x)Mtot][ρ(x)ρc]dx

 

=

35χ1(ρcρ¯)eq2(MlimitMtot)2015x{0x3x2[ρ(x)ρc]dx}[ρ(x)ρc]dx

 

=

35χ1(MlimitMtot)2𝔣~W𝔣~M2,

𝔖AEnorm=UintEnorm

=

4π3(γg1)χ33γ{[(34π)ρcρ¯]eqγ(MlimitMtot)γ013x2[P(x)Pc]dx}

 

=

4πn3χ3/n[34π(MlimitMtot)1𝔣~M]eq(n+1)/n𝔣~A,

where the structural form factors are defined as follows:

𝔣M

013[ρ(x)ρc]x2dx=(ρ¯ρc)eq,

𝔣W

3501{0x[ρ(x)ρc]x2dx}[ρ(x)ρc]xdx,

𝔣A

013[P(x)Pc]x2dx.

This gives, specifically for specifically for pressure-truncated polytropic configurations,

𝔣~M

=

(3θ~'ξ~),

𝔣~W

=

35(5n)ξ~2[θ~n+1+3(θ~')2𝔣~Mθ~],

𝔣~A

=

1(5n){6θ~n+1+(n+1)[3(θ~')2𝔣~Mθ~]}.

New Approach

In order to accommodate the structural integrals required by the Ledoux variational principle, let's re-derive some of these key energy and form-factor expressions. Basically, we will be repeating some earlier derivations.

Mass

Defining Mtot as the total mass of the isolated configuration, while MMtot is the truncated configuration's mass; defining R as the truncated configuration's (not necessarily equilibrium) radius; and being careful to define the mean density of the truncated configuration such that,

ρ¯3M4πR3,

we have,

Mr(r)

=

0r4πr2ρdr

Mr(r)Mtot

=

34π0r4π(rRnorm)2(ρρnorm)drRnorm

 

=

(ρcρnorm)(RRnorm)30r3(rR)2(ρρc)drR

 

=

(ρcρ¯)[ρ¯ρnorm](RRnorm)30ξ3(ξξ~)2(ρρc)dξξ~

 

=

(ρcρ¯)[M/R3Mtot/Rnorm3](RRnorm)30ξ3(ξξ~)2(ρρc)dξξ~

 

=

(ρcρ¯)(MMtot)ξ~30ξ3ξ2θndξ.

Acknowledging that MrM when the upper integration limit goes to ξ~, we see that the "mass" form-factor is,

𝔣~M

ξ~30ξ~3ξ2θndξ=(ρ¯ρc).

Now, from the,

Polytropic Lane-Emden Equation

1ξ2ddξ(ξ2dΘHdξ)=ΘHn

we realize that,

ddξ(ξ2θ')

=

ξ2θn.

So these last two expressions may also be written as,

Mr(r)Mtot

=

(ρcρ¯)(MMtot)ξ~3[3ξ2θ'];

and,

𝔣~M

[3θ'ξ]ξ~.

Modified Internal Energy

Now we want to develop the appropriately scaled integral definition of a "variational" internal energy having the form,

UΥEnorm

1(γg1)0R4πΥU(r)(rRnorm)2(PPnorm)(drRnorm)

 

=

1(γg1)[(34π)ρcρ¯]γg(MMtot)γg(RRnorm)33γg0R4πΥU(r)(rR)2(PPc)(drR)

 

=

4πn3[(34π)1𝔣~M(MMtot)](n+1)/nχ3/nξ~30ξ~3ΥU(ξ)ξ2θn+1dξ.

Hence, the coefficient, f, in the free-energy expression is,

f=χ3/n[UΥEnorm]

=

4πn3[(34π)1𝔣~M(MMtot)](n+1)/n{ξ~30ξ~3ΥU(ξ)ξ2θn+1dξ};

or, if ΥU(ξ)=1, then,

fb=χ3/n[UintEnorm]

=

4πn3[(34π)1𝔣~M(MMtot)](n+1)/n𝔣~A;

where,

𝔣~A

=

{ξ~30ξ~3ξ2θn+1dξ}.


When ΥU(ξ)=1, then according to Viala & Horedt (1974), this integral over polytropic functions becomes,

0ξ~3ξ2θn+1dξ

=

(n+1)(5n)[6(n+1)ξ~3θ~n+1+3ξ~3(θ~')23(ξ~2θ~')θ~]

𝔣~Aξ~30ξ~3ξ2θn+1dξ

=

(n+1)(5n)[6θ~n+1(n+1)+3(θ~')2𝔣~Mθ~],

which matches the expression for 𝔣~A derived earlier.

Modified Gravitational Potential Energy

Similarly, we have,

WΥEnorm

=

RnormGMtot20RΥW(r)(GMrr)4πr2ρdr

 

=

RnormρcR2Mtot0R4πΥW(r)(MrMtot)(ρρc)rdrR2

 

=

ρcρ¯(MMtot)χ10R3ΥW(r)[MrMtot](ρρc)rdrR2

 

=

[ρcρ¯(MMtot)]2χ1ξ~50ξ~3ΥW(ξ)[3ξ2θ']θnξdξ

 

=

35[ρcρ¯(MMtot)]2χ1ξ~50ξ~5ΥW(ξ)[3ξ2θ']θnξdξ.

Hence, the coefficient, e, in the free-energy expression is,

e=χ[WΥEnorm]

=

35[ρcρ¯(MMtot)]2{ξ~50ξ~5ΥW(ξ)[3ξ2θ']θnξdξ};

or, if ΥW(ξ)=1, then,

ea=χ[WgravEnorm]

=

35[1𝔣~M(MMtot)]2𝔣~W;

where,

𝔣~W

{ξ~50ξ~5[3ξ2θ']θnξdξ}.

Now, according to Viala & Horedt (1974), when ΥW(ξ)=1, this integral over polytropic functions becomes,

Wgrav

=

(4π)2(5n)Gρc2an5[ξ~3θ~n+1+3ξ~3(θ~')23(ξ~2θ~')θ~]

WgravEnorm

=

1(5n)[ξ~3θ~n+1+3ξ~3(θ~')23(ξ~2θ~')θ~][(ξ~2θ~')ξ1(5n)(n+1)n4π]1/(n3).

As we have detailed elsewhere, from this, we have deduced that, for polytropic configurations,

𝔣~W

=

ξ~50ξ~5[3ξ2θ']θnξdξ

 

=

35(5n)ξ~2[θ~n+1+3(θ~')2𝔣~Mθ~].

Test Virial Equilibrium Condition

If the correct normalized equilibrium radius, χeq, is specified, our expectation regarding virial equilibrium is that,

3ncχeq43bχeq(n3)/n+an

=

0.

Let's see if this expression is valid when we plug in the expressions for the equilibrium parameter pair — Req and Pe — that has been given by Horedt (1970), namely,

χeq=ReqRnorm=RHoredtRnormReqRHoredt

=

[(n+1)n(4π)]1/(n3)[MMtot](n1)/(n3)ξ~(ξ~2θ~)(1n)/(n3),

PePnorm=PHoredtPnormPePHoredt

=

[(n+1)3(4π)1](n+1)/(n3)[MMtot]2(n+1)/(n3)θ~nn+1(ξ~2θ~)2(n+1)/(n3),

where we have taken into account the shift in normalization factors,

Switch from Hoerdt's (1970) Normalization

[MMtot](n1)/(n3)RHoerdtRnorm

=

[(γ1)γ(4π)γ1]1/(43γ)=[(n+1)1(4π)1/n]n/(n3)=[(n+1)n(4π)]1/(n3);

[MMtot]2(n+1)/(n3)PHoerdtPnorm

=

{[γ(γ1)]3(14π)}γ/(43γ)=[(n+1)3(4π)1](n+1)/(n3).

We therefore have:

First Term

3n[4π3(PePnorm)]χeq4

=

4πn[(n+1)3(4π)1](n+1)/(n3)θ~nn+1(ξ~2θ~)2(n+1)/(n3)[MMtot]2(n+1)/(n3)

 

 

×{[(n+1)n(4π)]1/(n3)ξ~(ξ~2θ~)(1n)/(n3)}4[MMtot]4(n1)/(n3)

=

4πn[(n+1)[3(n+1)4n](4π)[4(n+1)]]1/(n3)ξ~4θ~nn+1(ξ~2θ~)[2(n+1)+4(1n)]/(n3)[MMtot][4(n1)2(n+1)]/(n3)

=

[n(n+1)]ξ~4θ~nn+1(ξ~2θ~)2[MMtot]2.

Second Term

3bχeq(n3)/n

=

4πn[(34π)1𝔣~M(MMtot)](n+1)/n(n+1)(5n)[6θ~n+1(n+1)+3(θ~')2𝔣~Mθ~]

 

 

×{[(n+1)n(4π)]1/(n3)ξ~(ξ~2θ~)(1n)/(n3)}(n3)/n[MMtot](n1)/n

 

=

4πn(5n)[14π(ξ~θ~')(MMtot)](n+1)/n[6θ~n+1+3(n+1)(θ~')2(n+1)(3θ~'ξ~)θ~]

 

 

×(n+1)1(4π)1/nξ~(n3)/n(ξ~2θ~)(1n)/n[MMtot](n1)/n

 

=

n(5n)(n+1)[MMtot]2[6θ~n+1+3(n+1)(θ~')2(n+1)(3θ~'ξ~)θ~]

 

 

×ξ~[(n3)/n+3(n+1)/n](ξ~2θ~)[(1n)/n(n+1)/n]

 

=

n(5n)(n+1)[MMtot]2[6θ~n+1+3(n+1)(θ~')2(n+1)(3θ~'ξ~)θ~]ξ~4(ξ~2θ~)2.


Third Term

an

=

35[(ξ~3θ~')(MMtot)]235n(5n)ξ~2[θ~n+1+3(θ~')2(3θ~'ξ~)θ~]

 

=

[MMtot]2nξ~4(5n)[θ~n+1+3(θ~')2(3θ~'ξ~)θ~](ξ~2θ~')2.

Combined

Combining the three terms, the virial expression becomes,

(5n)(n+1)[MMtot]2[3ncχeq4+an3bχeq(n3)/n]

=

n(5n)ξ~4θ~nn+1(ξ~2θ~)2+n(n+1)ξ~4[θ~n+1+3(θ~')2(3θ~'ξ~)θ~](ξ~2θ~')2

 

 

n[6θ~n+1+3(n+1)(θ~')2(n+1)(3θ~'ξ~)θ~]ξ~4(ξ~2θ~)2

 

=

n(ξ~2θ~)2ξ~4{(5n)θ~nn+1+(n+1)[θ~n+1+3(θ~')2(3θ~'ξ~)θ~]

 

 

[6θ~n+1+3(n+1)(θ~')2(n+1)(3θ~'ξ~)θ~]}

 

=

n(n+1)(ξ~2θ~)2ξ~4{0}.

Q. E. D.

The Ledoux Variational Principle

Drawing from a separate presentation of Ledoux's variational principle, let's normalize his Lagrangian using the same normalizations that have been used, above. His expression is …

L

=

2πe2iωt{0Rρ0ω2r04x2dr00RγgP0r04(xr0)2dr0+0Rr03x2ddr0[(3γg4)P0]dr0[3γgr03x2P0]0R}.

Our normalization produces,

L{}Enorm

=

0R[RnormGMtot2]ρ0ω2r04x2dr0γg0R[1PnormRnorm3]P0r04(xr0)2dr0

 

 

(3γg4)0R[RnormGMtot2]r03ρ0x2(1ρ0dP0dr0)dr0[3γgPnormRnorm3r03x2P0]0R

 

=

[MMtot]20Rx2[RnormR5Gρc][3ρc4πρ¯R3]2(ρ0ρc)ω2(r0R)4dr0Rγg0R[1PnormRnorm3]P0r04(xr0)2dr0

 

 

(3γg4)[MMtot]20Rx2[RnormR2GM2](r0R)3ρ0(GMrR2r02)dr0R3γgxsurface2[R3Rnorm3PePnorm]

 

=

[(34π)ρcρ¯]2[MMtot]2[ω2Gρc](RRnorm)10Rx2(ρ0ρc)(r0R)4dr0Rγg[PcPnorm](RRnorm)30R[(r0R)x(r0/R)]2(P0Pc)(r0R)2dr0R

 

 

(3γg4)[(34π)ρcρ¯][MMtot]2(RRnorm)10Rx2(ρ0ρc)(r0R)(MrM)dr0R3γg(RRnorm)3xsurface2[PePnorm].

Given that,

PcPnorm=[(34π)ρcρ¯(MMtot)]γ(RRnorm)3γ,

and,

MrM=(ρcρ¯)0R3(r0R)2(ρ0ρc)dr0R,

this expression for the Lagrangian becomes,

L{}Enorm

=

[(34π)ρcρ¯]2[MMtot]2[ω2Gρc](RRnorm)10Rx2(ρ0ρc)(r0R)4dr0Rγg[(34π)ρcρ¯(MMtot)]γ(RRnorm)33γ0R[(r0R)x(r0/R)]2(P0Pc)(r0R)2dr0R

 

 

(3γg4)(34π)[ρcρ¯]2[MMtot]2(RRnorm)10Rx2(ρ0ρc)(r0R){0R3(r0R)2(ρ0ρc)dr0R}dr0R3γg(RRnorm)3xsurface2[PePnorm].

In an effort to help identify the various terms in this expression as well as the relationship between the entire expression and our unperturbed free energy expression, let's ignore all terms involving the radial eigenfunction, x, and its derivative. In this case, we have,

L{}Enorm|unperturbed

=

[(34π)ρcρ¯]2[MMtot]2[ω2Gρc](RRnorm)10R(ρ0ρc)(r0R)4dr0Rγg(γg1)4π{4π3(γg1)[(34π)ρcρ¯(MMtot)]γ(RRnorm)33γ0R3(P0Pc)(r0R)2dr0R}

 

 

+(3γg4)(14π){35[ρcρ¯]2[MMtot]2(RRnorm)10R5(ρ0ρc)(r0R)[0R3(r0R)2(ρ0ρc)dr0R]dr0R}32γg4π{4π3(RRnorm)3[PePnorm]}

4πL{}Enorm|unperturbed

=

[(34π)ρcρ¯]2[MMtot]2[4πω2Gρc](RRnorm)10R(ρ0ρc)(r0R)4dr0Rγg(γg1){UintEnorm}+(3γg4){WgravEnorm}32γg{PeVEnorm}.

See Also

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |