Appendix/Ramblings/T6CoordinatesPt2: Difference between revisions
No edit summary |
|||
| (13 intermediate revisions by the same user not shown) | |||
| Line 742: | Line 742: | ||
</td></tr></table> | </td></tr></table> | ||
====Partial Derivatives & Scale Factors==== | |||
=====First Coordinate===== | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_1}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{x}{\lambda_1} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_1}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{q^2 y}{\lambda_1} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_1}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{p^2 z}{\lambda_1} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_1^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\partial \lambda_1}{\partial x} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_1}{\partial y} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_1}{\partial z} \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{x}{\lambda_1} \biggr)^2 | |||
+ \biggl( \frac{q^2 y}{\lambda_1} \biggr)^2 | |||
+ \biggl( \frac{p^2 z}{\lambda_1} \biggr)^2 | |||
\, .</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ h_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left" colspan="3"> | |||
<math>~ | |||
\lambda_1 \ell_{3D} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<div align="center"><math>\ell_{3D} \equiv (x^2 + q^4y^2 + p^4z^2)^{-1 / 2} \, .</math></div> | |||
As a result, the associated unit vector is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} h_1 \biggl( \frac{\partial \lambda_1}{\partial x} \biggr) | |||
+ \hat{\jmath} h_1 \biggl( \frac{\partial \lambda_1}{\partial y} \biggr) | |||
+ \hat{k} h_1 \biggl( \frac{\partial \lambda_1}{\partial z} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} x \ell_{3D} | |||
+ \hat{\jmath} q^2 y\ell_{3D} | |||
+ \hat{k} p^2 z \ell_{3D} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Notice that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(x^2 + q^4 y^2 + p^4 z^2) \ell_{3D}^2 = 1 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=====Second Coordinate (1<sup>st</sup> Try)===== | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{pz} \biggl[ \frac{x}{(x^2 + y^2)^{1 / 2}} \biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{pz} \biggl[ \frac{y}{(x^2 + y^2)^{1 / 2}} \biggr] | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{(x^2 + y^2)^{1 / 2}}{pz^2} | |||
\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_2^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ \frac{1}{pz} \biggl[ \frac{x}{(x^2 + y^2)^{1 / 2}} \biggr] \biggr\}^2 | |||
+ \biggl\{ \frac{1}{pz} \biggl[ \frac{y}{(x^2 + y^2)^{1 / 2}} \biggr] \biggr\}^2 | |||
+ \biggl\{ \frac{(x^2 + y^2)^{1 / 2}}{pz^2} \biggr\}^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ \biggl[ \frac{x^2}{(x^2 + y^2)p^2 z^2} \biggr] \biggr\} | |||
+ \biggl\{ \biggl[ \frac{y^2}{(x^2 + y^2)p^2 z^2} \biggr] \biggr\} | |||
+ \biggl\{ \frac{(x^2 + y^2)}{p^2 z^4} \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{p^2 z^2} | |||
+ \frac{(x^2 + y^2)}{p^2 z^4} | |||
= | |||
\frac{(x^2 + y^2 + z^2)}{p^2 z^4} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~h_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{p z^2}{r } | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
As a result, the associated unit vector is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr) | |||
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr) | |||
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} \biggl[ \frac{xz}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
+ \hat{\jmath} \biggl[ \frac{yz}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
- \hat{k} \biggl[ \frac{(x^2 + y^2)^{1 / 2}}{r} \biggr] \, . | |||
</math> | |||
</td> | |||
</table> | |||
Notice that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_2 \cdot \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{x^2 z^2}{r^2(x^2 + y^2)} \biggr] | |||
+ \biggl[ \frac{y^2 z^2}{r^2(x^2 + y^2)} \biggr] | |||
+ \biggl[ \frac{(x^2 + y^2)}{r^2} \biggr] | |||
= 1 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Let's check to see if this "second" unit vector is orthogonal to the "first." | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x\ell_{3D} \biggl[ \frac{xz}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
+ q^2 y\ell_{3D} \biggl[ \frac{yz}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
- p^2 z \ell_{3D} \biggl[ \frac{(x^2 + y^2)^{1 / 2}}{r} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\ell_{3D} \biggl\{ \biggl[ \frac{x^2z}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
+ \biggl[ \frac{q^2 y^2 z}{r(x^2 + y^2)^{1 / 2}} \biggr] | |||
- \biggl[ \frac{p^2 z(x^2 + y^2)^{1 / 2}}{r} \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{z\ell_{3D}}{r (x^2 + y^2)^{1 / 2}} \biggl\{ \biggl[ x^2\biggr] | |||
+ \biggl[ q^2 y^2 \biggr] | |||
- \biggl[ p^2 (x^2 + y^2) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~\ne</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
0 \ . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=====Second Coordinate (2<sup>nd</sup> Try)===== | |||
Let's try, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2}}{pz} \biggr] | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{\partial \lambda_2}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{x}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} } = \frac{x}{p^2 z^2 \lambda_2} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{q^2 y}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} } = \frac{q^2y}{p^2 z^2 \lambda_2} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\mathfrak{f}\cdot p^2z}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} } | |||
- | |||
\frac{(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2}}{pz^2} | |||
= \frac{1}{p^2z^2 \lambda_2 } \biggl( \mathfrak{f}\cdot p^2z \biggr) - \frac{\lambda_2 }{z} | |||
= \frac{1}{p^2z^2 \lambda_2 } \biggl( \mathfrak{f}\cdot p^2z - p^2z \lambda_2^2 \biggr) | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_2^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2 | |||
+ \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{x}{p^2 z^2 \lambda_2} \biggr]^2 | |||
+ \biggl[ \frac{q^2y}{p^2 z^2 \lambda_2} \biggr]^2 | |||
+ \biggl[ \frac{ \mathfrak{f} }{z \lambda_2 } - \frac{\lambda_2 }{z}\biggr]^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{x^2 + q^4 y^2}{p^4 z^4 \lambda_2^2} \biggr] | |||
+ \biggl[ \frac{1}{z\lambda_2}\biggl( \mathfrak{f} - \lambda_2^2 \biggr) \biggr]^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \frac{1}{p^4 z^4 \lambda_2^2} | |||
\biggl[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ h_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{p^2 z^2 \lambda_2}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
So, the associated unit vector is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr) | |||
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr) | |||
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} \biggl\{ \frac{x}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} | |||
+ \hat{\jmath} \biggl\{ \frac{q^2 y}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} | |||
+ \hat{k} \biggl\{ \frac{p^2z(\mathfrak{f}-\lambda_2^2)}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} \, . | |||
</math> | |||
</td> | |||
</table> | |||
Checking orthogonality … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x\ell_{3D} \biggl\{ \frac{x}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} | |||
+ q^2 y\ell_{3D} \biggl\{ \frac{q^2 y}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} | |||
+ p^2 z \ell_{3D} \biggl\{ \frac{p^2z(\mathfrak{f}-\lambda_2^2)}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } | |||
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } | |||
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
If <math>~\mathfrak{f} = 0</math>, we have … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~p^2 z (\mathfrak{f} - \lambda_2^2) </math> | |||
</td> | |||
<td align="center"> | |||
<math>~~~\rightarrow ~~~ </math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[- p^2 z \lambda_2^2\biggr]_{\mathfrak{f} = 0} | |||
= | |||
- p^2 z\biggl[\frac{(x^2 + q^2y^2 + \cancelto{0}{\mathfrak{f} \cdot }p^2 z^2 )^{1 / 2}}{pz} \biggr]^2 | |||
= | |||
- \frac{(x^2 + q^2y^2 )}{z} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
which, in turn, means … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~[ x^2 + q^4 y^2 + p^4 z^2 (\cancelto{0}{\mathfrak{f}} - \lambda_2^2)^2 ]^{1 / 2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
[ x^2 + q^4 y^2 + p^4 z^2 \lambda_2^4 ]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ x^2 + q^4 y^2 + p^4 z^2 \biggl[\frac{(x^2 + q^2y^2 + \cancelto{0}{\mathfrak{f}\cdot} p^2 z^2)^{1 / 2}}{pz} \biggr]^4 \biggr\}^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ x^2 + q^4 y^2 + \biggl[\frac{(x^2 + q^2y^2 )^{2}}{z^2} \biggr] \biggr\}^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(x^2 + q^4 y^2)^{1 / 2} \biggl[ 1 + \frac{(x^2 + q^2y^2 )}{z^2} \biggr]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{(x^2 + q^4 y^2)^{1 / 2}}{z} \biggl[ z^2 + (x^2 + q^2y^2 ) \biggr]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } | |||
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
===Speculation6=== | |||
====Determine λ<sub>2</sub>==== | |||
This is very similar to the [[#Speculation2|above, Speculation2]]. | |||
Try, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{x y^{1/q^2}}{ z^{2/p^2}} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
in which case, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\lambda_2}{x} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{x}{z^{2/p^2}} \biggl(\frac{1}{q^2}\biggr) y^{1/q^2 - 1} | |||
= | |||
\frac{\lambda_2}{q^2 y} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \lambda_2}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{2\lambda_2}{p^2 z} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
The associated scale factor is, then, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ | |||
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2 | |||
+ | |||
\biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2 | |||
+ | |||
\biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2 | |||
\biggr]^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ | |||
\biggl( \frac{ \lambda_2}{x} \biggr)^2 | |||
+ | |||
\biggl( \frac{\lambda_2}{q^2y} \biggr)^2 | |||
+ | |||
\biggl( - \frac{2\lambda_2}{p^2z} \biggr)^2 | |||
\biggr]^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{\lambda_2}\biggl[ | |||
\frac{ 1}{x^2} | |||
+ | |||
\frac{1}{q^4y^2} | |||
+ | |||
\frac{4}{p^4z^2} | |||
\biggr]^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{\lambda_2}\biggl[ | |||
\frac{ (q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2}{x^2 q^4 y^2 p^4 z^2} | |||
\biggr]^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\lambda_2}\biggl[ | |||
\frac{x q^2 y p^2 z}{ \mathcal{D}} | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
The associated unit vector is, then, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr) | |||
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr) | |||
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl\{ | |||
\hat{\imath} \biggl( \frac{1}{x} \biggr) | |||
+ \hat{\jmath} \biggl( \frac{1}{q^2 y} \biggr) | |||
+ \hat{k} \biggl( -\frac{2}{p^2 z} \biggr) | |||
\biggr\} \ . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Recalling that the unit vector associated with the "first" coordinate is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat\imath (x \ell_{3D}) + \hat\jmath (q^2y \ell_{3D}) + \hat{k} (p^2 z \ell_{3D}) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\ell_{3D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
let's check to see whether the "second" unit vector is orthogonal to the "first." | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}} \biggl[ | |||
1 + 1 - 2 | |||
\biggr] = 0 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<font color="red">'''Hooray!'''</font> | |||
====Direction Cosines for <i>Third</i> Unit Vector==== | |||
Now, what is the unit vector, <math>~\hat{e}_3</math>, that is simultaneously orthogonal to both these "first" and the "second" unit vectors? | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_3 \equiv \hat{e}_1 \times \hat{e}_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\hat\imath \biggl[ ( e_{1y} )( e_{2z}) - ( e_{2y} )( e_{1z}) ) \biggl] | |||
+ \hat\jmath \biggl[ ( e_{1z} )( e_{2x}) - ( e_{2z} )( e_{1x}) ) \biggl] | |||
+ \hat{k} \biggl[ ( e_{1x} )( e_{2y}) - ( e_{2x} )( e_{1y}) ) \biggl] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}} | |||
\biggl\{ | |||
\hat\imath \biggl[ \biggl( -\frac{2 q^2y}{p^2 z} \biggr) - \biggl( \frac{p^2z}{q^2y} \biggr) \biggl] | |||
+ \hat\jmath \biggl[ \biggl( \frac{p^2z}{x} \biggr) - \biggl(-\frac{2x}{p^2z} \biggr) \biggl] | |||
+ \hat{k} \biggl[ \biggl( \frac{x}{q^2y} \biggr) - \biggl( \frac{q^2y}{x} \biggr) \biggl] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}} | |||
\biggl\{ | |||
-\hat\imath \biggl[ \frac{2 q^4y^2 + p^4z^2}{q^2 y p^2 z} \biggl] | |||
+ \hat\jmath \biggl[ \frac{p^4z^2 + 2x^2}{xp^2 z} \biggl] | |||
+ \hat{k} \biggl[ \frac{x^2 - q^4y^2}{x q^2y} \biggl] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{\mathcal{D}} | |||
\biggl\{ | |||
-\hat\imath \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl] | |||
+ \hat\jmath \biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl] | |||
+ \hat{k} \biggl[ p^2z( x^2 - q^4y^2 ) \biggl] | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Is this a valid unit vector? First, note that … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
(x^2 + q^4y^2 + p^4 z^2 ) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(x^2 q^4 y^2 p^4 z^2 + x^4 p^4 z^2 + 4x^4q^4y^2) | |||
+ (q^8 y^4 p^4 z^2 + x^2 q^4y^2 p^4 z^2 + 4x^2q^8y^4) | |||
+(q^4 y^2 p^8 z^4 + x^2 p^8 z^4 + 4x^2q^4y^2 p^4 z^2) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
6x^2 q^4 y^2 p^4 z^2 + x^4(p^4 z^2 + 4 q^4y^2) | |||
+ q^8 y^4(p^4 z^2 + 4x^2) | |||
+p^8z^4(x^2 + q^4 y^2 )\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="Eureka">Then we have,</span> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2}\hat{e}_3 \cdot \hat{e}_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]^2 | |||
+ | |||
\biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl]^2 | |||
+ | |||
\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2(4 q^8y^4 + 4q^4y^2p^4z^2 + p^8z^4 ) | |||
+ | |||
q^4 y^2(p^8z^4 + 4x^2p^4z^2 + 4x^4 ) | |||
+ | |||
p^4z^2( x^4 - 2x^2q^4 y^2 + q^8y^4 ) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4 x^2 q^8y^4 + 4x^2 q^4y^2p^4z^2 + x^2 p^8z^4 | |||
+ | |||
q^4 y^2p^8z^4 + 4x^2q^4 y^2p^4z^2 + 4x^4q^4 y^2 | |||
+ | |||
x^4p^4z^2 - 2x^2q^4 y^2p^4z^2 + q^8y^4p^4z^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
6x^2 q^4y^2p^4z^2 | |||
+ p^8z^4 (x^2 +q^4 y^2) | |||
+ x^4(4q^4 y^2 + p^4z^2) | |||
+ q^8 y^4(4 x^2 + p^4z^2 ) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
which means that, <math>~\hat{e}_3\cdot \hat{e}_3 = 1</math>. <font color="red">'''Hooray! Again (11/11/2020)!'''</font> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr> | |||
<td align="center" colspan="9">'''Direction Cosine Components for T6 Coordinates'''</td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~n</math></td> | |||
<td align="center"><math>~\lambda_n</math></td> | |||
<td align="center"><math>~h_n</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td> | |||
<td align="center"><math>~\gamma_{n1}</math></td> | |||
<td align="center"><math>~\gamma_{n2}</math></td> | |||
<td align="center"><math>~\gamma_{n3}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~1</math></td> | |||
<td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td> | |||
<td align="center"><math>~\lambda_1 \ell_{3D}</math></td> | |||
<td align="center"><math>~\frac{x}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td> | |||
<td align="center"><math>~(x) \ell_{3D}</math></td> | |||
<td align="center"><math>~(q^2 y)\ell_{3D}</math></td> | |||
<td align="center"><math>~(p^2z) \ell_{3D}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~2</math></td> | |||
<td align="center"><math>~\frac{x y^{1/q^2}}{ z^{2/p^2}}</math></td> | |||
<td align="center"><math>~\frac{1}{\lambda_2}\biggl[\frac{x q^2 y p^2 z}{ \mathcal{D}}\biggr] </math></td> | |||
<td align="center"><math>~\frac{\lambda_2}{x}</math></td> | |||
<td align="center"><math>~\frac{\lambda_2}{q^2 y}</math></td> | |||
<td align="center"><math>~-\frac{2\lambda_2}{p^2 z}</math></td> | |||
<td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{x}\biggr)</math></td> | |||
<td align="center"><math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{q^2y}\biggr)</math></td> | |||
<td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(-\frac{2}{p^2z}\biggr)</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~3</math></td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center"><math>~-\frac{\ell_{3D}}{\mathcal{D}}\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]</math></td> | |||
<td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl]</math></td> | |||
<td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]</math></td> | |||
</tr> | |||
<tr> | |||
<td align="left" colspan="9"> | |||
<table border="0" cellpadding="8" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\ell_{3D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_1 \cdot \hat{e}_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}^2}{\mathcal{D}} | |||
\biggl\{ | |||
-x \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl] | |||
+ q^2 y \biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl] | |||
+ p^2 z \biggl[ p^2z( x^2 - q^4y^2 ) \biggl] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}^2}{\mathcal{D}} | |||
\biggl\{ | |||
- (2 x^2q^4y^2 + x^2p^4z^2 ) | |||
+ (q^4 y^2 p^4z^2 + 2x^2 q^4 y^2) | |||
+ ( x^2p^4z^2 - q^4y^2 p^4z^2 ) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
0 \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_2 \cdot \hat{e}_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{\mathcal{D}} \cdot \frac{x q^2 y p^2 z}{\mathcal{D}} | |||
\biggl\{ | |||
- \biggl[ (2 q^4y^2 + p^4z^2 ) \biggl] | |||
+ \biggl[ (p^4z^2 + 2x^2 ) \biggl] | |||
- \biggl[ 2( x^2 - q^4y^2 ) \biggl] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
0 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<font color="red">'''Q. E. D.'''</font> | |||
<!-- TEST --> | |||
====Search for <i>Third</i> Coordinate Expression==== | |||
Let's try … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\mathcal{D}^n \ell_{3D}^m </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{n / 2} (x^2 + q^4y^2 + p^4 z^2 )^{- m / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{\partial \lambda_3}{\partial x_i}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\ell_{3D}^m \biggl[ \frac{n}{2} \biggl(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr)^{n / 2 - 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \mathcal{D}^n \biggl[ - \frac{m}{2} (x^2 + q^4y^2 + p^4 z^2 )^{- m / 2 - 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(x^2 + q^4y^2 + p^4 z^2 )\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\mathcal{D}^n \ell_{3D}^m \biggl[ \frac{n}{2} \biggl(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr)^{- 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \mathcal{D}^n \ell_{3D}^m \biggl[ - \frac{m}{2} (x^2 + q^4y^2 + p^4 z^2 )^{- 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(x^2 + q^4y^2 + p^4 z^2 )\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\mathcal{D}^n \ell_{3D}^m} \cdot \frac{\partial \lambda_3}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{n}{2\mathcal{D}^2}\frac{\partial}{\partial x} \biggl[q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr] | |||
- | |||
\frac{m \ell_{3D}^2}{2} \frac{\partial}{\partial x} \biggl[ x^2 + q^4y^2 + p^4 z^2 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~x \biggl\{ | |||
\frac{n}{\mathcal{D}^2}\biggl[p^4 z^2 + 4q^4y^2 \biggr] | |||
- | |||
m \ell_{3D}^2 | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~x \biggl\{ | |||
\frac{n (p^4 z^2 + 4q^4y^2)}{ ( q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 ) } | |||
- | |||
\frac{m}{ ( x^2 + q^4y^2 + p^4 z^2 ) } | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
This is overly cluttered! Let's try, instead … | |||
<table border="1" cellpadding="8" align="center" width="80%"><tr><td align="left"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A \equiv \ell_{3D}^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^4y^2 + p^4 z^2 ) \, ,</math> | |||
</td> | |||
<td align="center"> and, </td> | |||
<td align="right"> | |||
<math>~B \equiv \mathcal{D}^2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{\partial A}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2x \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial A}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2q^4 y \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial A}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ 2p^4 z\, ;</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \frac{\partial B}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2x( 4q^4y^2 + p^4 z^2 ) \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial B}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2q^4 y (p^4 z^2 + 4x^2) \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial B}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ 2p^4 z(q^4 y^2 + x^2)\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
Now, let's assume that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{A}{B} \biggr)^{1 / 2} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ \frac{ \partial \lambda_3}{\partial x_i}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{2 (AB)^{1 / 2}} \cdot \frac{\partial A}{\partial x_i} | |||
- | |||
\frac{A^{1 / 2}}{2 B^{3 / 2}} \cdot \frac{\partial B}{\partial x_i} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\lambda_3}{2AB} | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial x_i} | |||
- | |||
A \cdot \frac{\partial B}{\partial x_i} | |||
\biggr] | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) \cdot \frac{\partial A}{\partial x_i} | |||
- | |||
(x^2 + q^4y^2 + p^4 z^2 ) \cdot \frac{\partial B}{\partial x_i} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="1" cellpadding="8" align="center" width="80%"><tr><td align="left"> | |||
Looking ahead … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ \frac{\lambda_3}{2AB} \biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr] \biggr\}^2 | |||
+ | |||
\biggl\{ \frac{\lambda_3}{2AB} \biggl[ | |||
B \cdot \frac{\partial A}{\partial y} | |||
- | |||
A \cdot \frac{\partial B}{\partial y} | |||
\biggr] \biggr\}^2 | |||
+ | |||
\biggl\{ \frac{\lambda_3}{2AB} \biggl[ | |||
B \cdot \frac{\partial A}{\partial z} | |||
- | |||
A \cdot \frac{\partial B}{\partial z} | |||
\biggr] \biggr\}^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \biggl[\frac{2AB}{\lambda_3} \biggr]^2 h_3^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial y} | |||
- | |||
A \cdot \frac{\partial B}{\partial y} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial z} | |||
- | |||
A \cdot \frac{\partial B}{\partial z} | |||
\biggr]^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \biggl[\frac{\lambda_3}{2AB} \biggr] h_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{\biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial y} | |||
- | |||
A \cdot \frac{\partial B}{\partial y} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial z} | |||
- | |||
A \cdot \frac{\partial B}{\partial z} | |||
\biggr]^2 | |||
\biggr\}^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Then, for example, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\gamma_{31} \equiv h_3 \biggl(\frac{\partial \lambda_3}{\partial x} \biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr] | |||
\biggl\{\biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial y} | |||
- | |||
A \cdot \frac{\partial B}{\partial y} | |||
\biggr]^2 | |||
+ | |||
\biggl[ | |||
B \cdot \frac{\partial A}{\partial z} | |||
- | |||
A \cdot \frac{\partial B}{\partial z} | |||
\biggr]^2 | |||
\biggr\}^{-1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
As a result, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2x \biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
(x^2 + q^4y^2 + p^4 z^2 ) ( 4q^4y^2 + p^4 z^2 ) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2x \biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
(4x^2q^4y^2 + x^2 p^4 z^2 + 4q^8y^4 + q^4y^2 p^4z^2 + 4q^4y^2 p^4 z^2 + p^8z^4) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2x \biggl[ | |||
- | |||
(4q^8y^4 + 4q^4y^2 p^4 z^2 + p^8z^4) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-2x (2q^4y^2 + p^4z^2)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-8x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln\lambda_3}{\partial \ln{x}}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\biggl[ 2x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)\biggr]^2 \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2q^4y\biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
(x^2 + q^4y^2 + p^4 z^2 ) (p^4 z^2 + 4x^2) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2q^4y\biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
( x^2p^4z^2 + 4x^4 + q^4y^2p^4z^2 + 4x^2q^4y^2 + p^8z^4 + 4x^2p^4z^2) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2q^4y( 4x^4 + p^8z^4 + 4x^2p^4z^2) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2q^4y( 2x^2 + p^4z^2 )^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln\lambda_3}{\partial \ln{y} }</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^2 \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2p^4 z \biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
(x^2 + q^4y^2 + p^4 z^2 ) (q^4 y^2 + x^2) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2p^4 z \biggl[ | |||
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
- | |||
(x^2q^4y^2 + x^4 + q^8y^4 + x^2q^4y^2 + q^4y^2p^4z^2 + x^2p^4z^2) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2p^4 z \biggl[ | |||
( 2x^2q^4y^2) | |||
- | |||
( x^4 + q^8y^4 ) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-2p^4 z \biggl[ | |||
x^4 + q^8y^4 | |||
- 2x^2q^4y^2 | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-2p^4 z (x^2 - q^4y^2 )^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln \lambda_3}{\partial \ln{z}}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-4 \biggl[ \biggl( \frac{p^4 z^2}{4} \biggr) (x^2 - q^4y^2 )^2 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^2 | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<font color="red">'''Wow! Really close!''' (13 November 2020)</font> | |||
Just for fun, let's see what we get for <math>~h_3</math>. It is given by the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\partial \lambda_3}{\partial x} \biggr)^2 | |||
+\biggl( \frac{\partial \lambda_3}{\partial y} \biggr)^2 | |||
+\biggl( \frac{\partial \lambda_3}{\partial z} \biggr)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ \frac{\lambda_3}{ABx} \biggl[ 2x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)\biggr]^2 \biggr\}^2 | |||
+\biggl\{ \frac{\lambda_3}{ABy} \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^2 \biggr\}^2 | |||
+\biggl\{ \frac{\lambda_3}{ABz} \biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^2 \biggr\}^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ \biggl[ \frac{AB}{\lambda_3}\biggr]^2 h_3^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ \frac{1}{x^2} \biggl[ 2x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)\biggr]^4 \biggr\} | |||
+\biggl\{ \frac{1}{y^2} \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^4 \biggr\} | |||
+\biggl\{ \frac{1}{z^2} \biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^4 \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
====Fiddle Around==== | |||
Let … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{L}_x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ | |||
B \cdot \frac{\partial A}{\partial x} | |||
- | |||
A \cdot \frac{\partial B}{\partial x} | |||
\biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~8x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2}{x} \biggl[ 2x \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)\biggr]^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~8x~\mathfrak{F}_x(y,z) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{L}_y</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ | |||
B \cdot \frac{\partial A}{\partial y} | |||
- | |||
A \cdot \frac{\partial B}{\partial y} | |||
\biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
8q^4y\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2}{y} \biggl[ 2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr)\biggr]^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~8y~\mathfrak{F}_y(x,z) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{L}_z</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\biggl[ | |||
B \cdot \frac{\partial A}{\partial z} | |||
- | |||
A \cdot \frac{\partial B}{\partial z} | |||
\biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2p^4 z \biggl(x^2 - q^4y^2 \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2}{z} \biggl[p^2 z \biggl(x^2 - q^4y^2 \biggr)\biggr]^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~8z~\mathfrak{F}_z(x,y) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
With this shorthand in place, we can write, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\hat{e}_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\ell_{3D}}{\mathcal{D}} | |||
\biggl\{ | |||
-\hat\imath \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl] | |||
+ \hat\jmath \biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl] | |||
+ \hat{k} \biggl[ p^2z( x^2 - q^4y^2 ) \biggl] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{(AB)^{1 / 2}} | |||
\biggl\{ | |||
-\hat\imath \biggl[ \frac{x \mathcal{L}_x}{2} \biggl]^{1 / 2} | |||
+ \hat\jmath \biggl[ \frac{y \mathcal{L}_y}{2} \biggl]^{1 / 2} | |||
+ \hat{k} \biggl[ \frac{z \mathcal{L}_z}{2} \biggl]^{1 / 2} | |||
\biggr\} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
We therefore also recognize that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial x}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{x \mathcal{L}_x}{2} \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{1}{(AB)^{1 / 2}} \biggl[ 4x^2 ~\mathfrak{F}_x \biggl]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial y}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{y \mathcal{L}_y}{2} \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{(AB)^{1 / 2}} \biggl[ 4y^2~\mathfrak{F}_y \biggl]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial z}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{z \mathcal{L}_z}{2} \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{(AB)^{1 / 2}} \biggl[ 4z^2~\mathfrak{F}_z \biggl]^{1 / 2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Now, if — and it is a BIG "if" — <math>~h_3 = h_0(AB)^{-1 / 2}</math>, then we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial x}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\biggl[ 4x^2 ~\mathfrak{F}_x \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-2x \biggl[ \mathfrak{F}_x \biggl]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial y}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ 4y^2~\mathfrak{F}_y \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2y \biggl[ \mathfrak{F}_y \biggl]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial z}\biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ 4z^2~\mathfrak{F}_z \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2z\biggl[ \mathfrak{F}_z \biggl]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ h_0 \lambda_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-x^2 \biggl[ \mathfrak{F}_x \biggl]^{1 / 2} | |||
+ y^2 \biggl[ \mathfrak{F}_y \biggl]^{1 / 2} | |||
+ z^2 \biggl[ \mathfrak{F}_z \biggl]^{1 / 2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
But if this is the correct expression for <math>~\lambda_3</math> and its three partial derivatives, then it must be true that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl(\frac{\partial \lambda_3}{\partial x}\biggr)^2 | |||
+ | |||
\biggl(\frac{\partial \lambda_3}{\partial y}\biggr)^2 | |||
+ | |||
\biggl(\frac{\partial \lambda_3}{\partial z}\biggr)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \biggl( \frac{h_3}{h_0}\biggr)^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4x^2 \biggl[ \mathfrak{F}_x \biggl] | |||
+ | |||
4y^2 \biggl[ \mathfrak{F}_y \biggl] | |||
+ | |||
4z^2\biggl[ \mathfrak{F}_z \biggl] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4x^2 \biggl[ \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)^2 \biggl] | |||
+ | |||
4y^2 \biggl[ q^4\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2\biggl] | |||
+ | |||
4z^2\biggl[ \frac{p^4}{4}\biggl(x^2 - q^4y^2 \biggr)^2 \biggl] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2 (2q^4y^2 + p^4z^2 )^2 | |||
+ | |||
q^4 y^2( 2x^2 + p^4z^2 )^2 | |||
+ | |||
p^4 z^2 (x^2 - q^4y^2 )^2 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Well … the right-hand side of this expression is identical to the right-hand side of the [[#Eureka|above expression]], where we showed that it equals <math>~(\ell_{3D}/\mathcal{D})^{-2}</math>. That is to say, we are now showing that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( \frac{h_3}{h_0}\biggr)^{-2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2} = [AB]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{h_3}{h_0}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(AB)^{-1 / 2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
And this is ''precisely'' what, just a few lines above, we hypothesized the functional expression for <math>~h_3</math> ought to be. <font color="red">'''EUREKA!'''</font> | |||
====Summary==== | |||
In summary, then … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\lambda_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-x^2 \biggl[ \mathfrak{F}_x \biggl]^{1 / 2} | |||
+ y^2 \biggl[ \mathfrak{F}_y \biggl]^{1 / 2} | |||
+ z^2 \biggl[ \mathfrak{F}_z \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-x^2 \biggl[\biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr)^2 \biggl]^{1 / 2} | |||
+ y^2 \biggl[ q^4\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2\biggl]^{1 / 2} | |||
+ z^2 \biggl[ \frac{p^4}{4} \biggl(x^2 - q^4y^2 \biggr)^2 \biggl]^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-x^2 \biggl(q^4y^2 + \frac{p^4z^2}{2} \biggr) | |||
+ q^2y^2 \biggl( x^2 + \frac{p^4z^2}{2} \biggr) | |||
+ \frac{p^2 z^2}{2} \biggl(x^2 - q^4y^2 \biggr) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~h_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(AB)^{-1 / 2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[ | |||
(x^2 + q^4y^2 + p^4 z^2 )(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) | |||
\biggr]^{-1 / 2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
No! Once again this does not work. The direction cosines — and, hence, the components of the <math>~\hat{e}_3</math> unit vector — are not correct! | |||
===Speculation7=== | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr> | |||
<td align="center" colspan="9">'''Direction Cosine Components for T6 Coordinates'''</td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~n</math></td> | |||
<td align="center"><math>~\lambda_n</math></td> | |||
<td align="center"><math>~h_n</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td> | |||
<td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td> | |||
<td align="center"><math>~\gamma_{n1}</math></td> | |||
<td align="center"><math>~\gamma_{n2}</math></td> | |||
<td align="center"><math>~\gamma_{n3}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~1</math></td> | |||
<td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td> | |||
<td align="center"><math>~\lambda_1 \ell_{3D}</math></td> | |||
<td align="center"><math>~\frac{x}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td> | |||
<td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td> | |||
<td align="center"><math>~(x) \ell_{3D}</math></td> | |||
<td align="center"><math>~(q^2 y)\ell_{3D}</math></td> | |||
<td align="center"><math>~(p^2z) \ell_{3D}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~2</math></td> | |||
<td align="center"><math>~\frac{x y^{1/q^2}}{ z^{2/p^2}}</math></td> | |||
<td align="center"><math>~\frac{1}{\lambda_2}\biggl[\frac{x q^2 y p^2 z}{ \mathcal{D}}\biggr] </math></td> | |||
<td align="center"><math>~\frac{\lambda_2}{x}</math></td> | |||
<td align="center"><math>~\frac{\lambda_2}{q^2 y}</math></td> | |||
<td align="center"><math>~-\frac{2\lambda_2}{p^2 z}</math></td> | |||
<td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{x}\biggr)</math></td> | |||
<td align="center"><math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{q^2y}\biggr)</math></td> | |||
<td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(-\frac{2}{p^2z}\biggr)</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~3</math></td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center">---</td> | |||
<td align="center"><math>~-\frac{\ell_{3D}}{\mathcal{D}}\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]</math></td> | |||
<td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ q^2 y(p^4z^2 + 2x^2 ) \biggl]</math></td> | |||
<td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]</math></td> | |||
</tr> | |||
<tr> | |||
<td align="left" colspan="9"> | |||
<table border="0" cellpadding="8" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\ell_{3D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{D}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
On my white-board I have shown that, if | |||
<div align="center"> | |||
<math>~\lambda_3 \equiv \ell_{3D} \mathcal{D} \, ,</math> | |||
</div> | |||
then everything will work out as long as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{L}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl(\frac{\mathcal{D}}{\ell_{3D}} \biggr)^2 \frac{1}{\ell_{3D}^4} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathcal{L}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2 (2q^4 y^2 + p^4z^2 )^4 | |||
+ | |||
q^8 y^2 (2x^2 + p^4 z^2)^4 | |||
+ | |||
p^8z^2( x^2 - q^4y^2)^4 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2 (4q^8 y^4 + 4q^4y^2p^4z^2 + p^8z^4 )^2 | |||
+ | |||
q^8 y^2 (4x^4 + 4x^2p^4z^2 + p^8 z^4)^2 | |||
+ | |||
p^8z^2( x^4 - 2x^2q^4y^2 + q^8y^4)^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2 | |||
[16q^{16}y^8 + 16q^{12}y^6p^4z^2 + 4q^8y^4p^8z^4 + 16q^{12}y^6p^4z^2 + 16q^8y^4p^8z^4 + 4q^4y^2p^{12}z^6 + 4q^8y^4p^8z^4 + 4q^4y^2 p^{12}z^6 + p^{16}z^8] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
q^8 y^2 | |||
[16x^8 + 16x^6p^4z^2 + 4x^4p^8z^4 + 16x^6p^4z^2 + 16x^4p^8z^4 + 4x^2p^{12}z^6 + 4x^4p^8z^4 + 4x^2p^{12}z^6 + p^{16}z^8] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
p^8z^2 | |||
[x^8 - 2x^6q^4y^2 + x^4q^8y^4 - 2x^6q^4y^2 + 4x^4q^8y^4 - 2x^2q^{12}y^6 + x^4q^8y^4 - 2x^2q^{12}y^6 + q^{16}y^8] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
x^2 | |||
[16q^{16}y^8 + 32q^{12}y^6p^4z^2 + 24q^8y^4p^8z^4 + 8q^4y^2p^{12}z^6 + p^{16}z^8] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
q^8 y^2 | |||
[16x^8 + 32x^6p^4z^2 + 24x^4p^8z^4 + 8x^2p^{12}z^6 + p^{16}z^8] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
p^8z^2 | |||
[x^8 - 4x^6q^4y^2 + 6x^4q^8y^4 - 4x^2q^{12}y^6 + q^{16}y^8] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Let's check this out. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathrm{RHS}~\equiv \biggl(\frac{\mathcal{D}}{\ell_{3D}} \biggr)^2 \frac{1}{\ell_{3D}^4}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)(x^2 + q^4y^2 + p^4 z^2 )^3</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~(x^2 + q^4y^2 + p^4 z^2 )(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)[x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
[(6x^2q^4 y^2 p^4 z^2 + x^4 p^4 z^2 + 4x^4q^4y^2) | |||
+ | |||
(q^8 y^4 p^4 z^2 + 4x^2q^8 y^4) | |||
+ | |||
(q^4 y^2 p^8 z^4 + x^2 p^8 z^4 )] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~\times [x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
[6x^2q^4 y^2 p^4 z^2 + x^4(p^4 z^2 + 4q^4y^2) | |||
+ | |||
q^8 y^4(p^4 z^2 + 4x^2) | |||
+ | |||
p^8 z^4 (q^4 y^2 + x^2 )] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~\times [x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math> | |||
</td> | |||
</tr> | |||
</table> | |||
{{ SGFfooter }} | {{ SGFfooter }} | ||
Latest revision as of 17:13, 23 July 2021
Concentric Ellipsoidal (T6) Coordinates (Part 2)
Orthogonal Coordinates
Speculation5
Spherical Coordinates
|
|
|
|
|
|
|
|
|
|
|
|
Use λ1 Instead of r
Here, as above, we define,
|
|
|
|
Using this expression to eliminate "x" (in favor of λ1) in each of the three spherical-coordinate definitions, we obtain,
|
|
|
|
|
|
|
|
|
|
|
|
After a bit of additional algebraic manipulation, we find that,
|
|
|
|
|
|
|
|
|
|
|
|
where,
|
|
|
|
|
As a check, let's set , which should reduce to the normal spherical coordinate system.
|
Relationship To T3 Coordinates
If we set, , but continue to assume that , we expect to see a representation that resembles our previously discussed, T3 Coordinates. Note, for example, that the new "radial" coordinate is,
|
|
|
|
and, |
|
|
|
|
|
|
|
|
|
|
|
We also see that,
|
|
|
|
Again Consider Full 3D Ellipsoid
Let's try to replace everywhere, with . This gives,
|
|
|
|
which means that,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Now, notice that,
|
|
|
|
and,
|
|
|
|
Hence,
|
|
|
|
|
|
|
|
|
|
|
|
where,
|
|
|
|
Solving the quadratic equation, we have,
|
|
|
|
|
|
|
|
|
Tentative Summary
|
Partial Derivatives & Scale Factors
First Coordinate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
where,
As a result, the associated unit vector is,
|
|
|
|
|
|
|
|
Notice that,
|
|
|
|
Second Coordinate (1st Try)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
As a result, the associated unit vector is,
|
|
|
|
|
|
|
|
Notice that,
|
|
|
|
Let's check to see if this "second" unit vector is orthogonal to the "first."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Second Coordinate (2nd Try)
Let's try,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hence,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
So, the associated unit vector is,
|
|
|
|
|
|
|
|
Checking orthogonality …
|
|
|
|
|
|
|
|
|
|
|
|
If , we have …
|
|
|
|
which, in turn, means …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
and,
|
|
|
|
Speculation6
Determine λ2
This is very similar to the above, Speculation2. Try,
|
|
|
|
in which case,
|
|
|
|
|
|
|
|
|
|
|
|
The associated scale factor is, then,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
where,
|
|
|
|
The associated unit vector is, then,
|
|
|
|
|
|
|
|
Recalling that the unit vector associated with the "first" coordinate is,
|
|
|
|
where,
|
|
|
|
let's check to see whether the "second" unit vector is orthogonal to the "first."
|
|
|
|
Hooray!
Direction Cosines for Third Unit Vector
Now, what is the unit vector, , that is simultaneously orthogonal to both these "first" and the "second" unit vectors?
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Is this a valid unit vector? First, note that …
|
|
|
|
|
|
|
|
|
|
|
|
Then we have,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
which means that, . Hooray! Again (11/11/2020)!
| Direction Cosine Components for T6 Coordinates | ||||||||||||||
| --- | --- | --- | --- | --- | ||||||||||
|
||||||||||||||
Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors.
|
|
|
|
|
|
|
|
|
|
|
|
and,
|
|
|
|
|
|
|
|
Q. E. D.
Search for Third Coordinate Expression
Let's try …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hence,
|
|
|
|
|
|
|
|
|
|
|
|
This is overly cluttered! Let's try, instead …
|
Now, let's assume that,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Looking ahead …
Then, for example,
|
As a result, we have,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
and,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
and,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wow! Really close! (13 November 2020)
Just for fun, let's see what we get for . It is given by the expression,
|
|
|
|
|
|
|
|
|
|
|
|
Fiddle Around
Let …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
With this shorthand in place, we can write,
|
|
|
|
|
|
|
|
We therefore also recognize that,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Now, if — and it is a BIG "if" — , then we have,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
But if this is the correct expression for and its three partial derivatives, then it must be true that,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Well … the right-hand side of this expression is identical to the right-hand side of the above expression, where we showed that it equals . That is to say, we are now showing that,
|
|
|
|
|
|
|
|
And this is precisely what, just a few lines above, we hypothesized the functional expression for ought to be. EUREKA!
Summary
In summary, then …
|
|
|
|
|
|
|
|
|
|
|
|
and,
|
|
|
|
|
|
|
|
No! Once again this does not work. The direction cosines — and, hence, the components of the unit vector — are not correct!
Speculation7
| Direction Cosine Components for T6 Coordinates | ||||||||||||||
| --- | --- | --- | --- | --- | ||||||||||
|
||||||||||||||
On my white-board I have shown that, if
then everything will work out as long as,
|
|
|
|
where,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Let's check this out.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS | |