Appendix/Ramblings/T6CoordinatesPt2: Difference between revisions

From jetwiki
Jump to navigation Jump to search
No edit summary
 
(13 intermediate revisions by the same user not shown)
Line 742: Line 742:


</td></tr></table>
</td></tr></table>
====Partial Derivatives &amp; Scale Factors====
=====First Coordinate=====
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_1}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{x}{\lambda_1} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_1}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{q^2 y}{\lambda_1} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_1}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{p^2 z}{\lambda_1} \, .</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_1^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\partial \lambda_1}{\partial x} \biggr)^2
+ \biggl( \frac{\partial \lambda_1}{\partial y} \biggr)^2
+ \biggl( \frac{\partial \lambda_1}{\partial z} \biggr)^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{x}{\lambda_1} \biggr)^2
+ \biggl( \frac{q^2 y}{\lambda_1} \biggr)^2
+ \biggl( \frac{p^2 z}{\lambda_1} \biggr)^2
\, .</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ h_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left" colspan="3">
<math>~
\lambda_1 \ell_{3D} \, ,
</math>
  </td>
</tr>
</table>
where,
<div align="center"><math>\ell_{3D} \equiv (x^2 + q^4y^2 + p^4z^2)^{-1 / 2} \, .</math></div>
As a result, the associated unit vector is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath} h_1 \biggl( \frac{\partial \lambda_1}{\partial x} \biggr)
+ \hat{\jmath} h_1 \biggl( \frac{\partial \lambda_1}{\partial y} \biggr)
+ \hat{k} h_1 \biggl( \frac{\partial \lambda_1}{\partial z} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath} x \ell_{3D}
+ \hat{\jmath} q^2 y\ell_{3D}
+ \hat{k} p^2 z \ell_{3D}
\, .
</math>
  </td>
</tr>
</table>
Notice that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_1</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(x^2 + q^4 y^2 + p^4 z^2) \ell_{3D}^2 = 1 \, .
</math>
  </td>
</tr>
</table>
=====Second Coordinate (1<sup>st</sup> Try)=====
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{pz} \biggl[ \frac{x}{(x^2 + y^2)^{1 / 2}} \biggr] \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{pz} \biggl[ \frac{y}{(x^2 + y^2)^{1 / 2}} \biggr]
\, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{(x^2 + y^2)^{1 / 2}}{pz^2}
\, .</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_2^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2
+ \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2
+ \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{1}{pz} \biggl[ \frac{x}{(x^2 + y^2)^{1 / 2}} \biggr] \biggr\}^2
+ \biggl\{ \frac{1}{pz} \biggl[ \frac{y}{(x^2 + y^2)^{1 / 2}} \biggr] \biggr\}^2
+ \biggl\{ \frac{(x^2 + y^2)^{1 / 2}}{pz^2} \biggr\}^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \biggl[ \frac{x^2}{(x^2 + y^2)p^2 z^2} \biggr] \biggr\}
+ \biggl\{ \biggl[ \frac{y^2}{(x^2 + y^2)p^2 z^2} \biggr] \biggr\}
+ \biggl\{ \frac{(x^2 + y^2)}{p^2 z^4} \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{p^2 z^2}
+ \frac{(x^2 + y^2)}{p^2 z^4}
=
\frac{(x^2 + y^2 + z^2)}{p^2 z^4}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~h_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{p z^2}{r }
</math>
  </td>
</tr>
</table>
As a result, the associated unit vector is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr)
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath}  \biggl[ \frac{xz}{r(x^2 + y^2)^{1 / 2}} \biggr]
+ \hat{\jmath}  \biggl[ \frac{yz}{r(x^2 + y^2)^{1 / 2}} \biggr]
- \hat{k} \biggl[ \frac{(x^2 + y^2)^{1 / 2}}{r} \biggr] \, .
</math>
  </td>
</table>
Notice that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_2 \cdot \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{x^2 z^2}{r^2(x^2 + y^2)} \biggr]
+ \biggl[ \frac{y^2 z^2}{r^2(x^2 + y^2)} \biggr]
+ \biggl[ \frac{(x^2 + y^2)}{r^2} \biggr]
= 1 \, .
</math>
  </td>
</tr>
</table>
Let's check to see if this "second" unit vector is orthogonal to the "first."
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x\ell_{3D} \biggl[ \frac{xz}{r(x^2 + y^2)^{1 / 2}} \biggr]
+ q^2 y\ell_{3D} \biggl[ \frac{yz}{r(x^2 + y^2)^{1 / 2}} \biggr]
- p^2 z \ell_{3D} \biggl[ \frac{(x^2 + y^2)^{1 / 2}}{r} \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\ell_{3D} \biggl\{ \biggl[ \frac{x^2z}{r(x^2 + y^2)^{1 / 2}} \biggr]
+ \biggl[ \frac{q^2 y^2 z}{r(x^2 + y^2)^{1 / 2}} \biggr]
-  \biggl[ \frac{p^2 z(x^2 + y^2)^{1 / 2}}{r} \biggr]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{z\ell_{3D}}{r (x^2 + y^2)^{1 / 2}} \biggl\{ \biggl[ x^2\biggr]
+ \biggl[ q^2 y^2 \biggr]
-  \biggl[ p^2 (x^2 + y^2) \biggr]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\ne</math>
  </td>
  <td align="left">
<math>~
0 \ .
</math>
  </td>
</tr>
</table>
=====Second Coordinate (2<sup>nd</sup> Try)=====
Let's try,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2}}{pz}  \biggr]
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~\frac{\partial \lambda_2}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{x}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} } = \frac{x}{p^2 z^2 \lambda_2}
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{q^2 y}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} } = \frac{q^2y}{p^2 z^2 \lambda_2}
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\mathfrak{f}\cdot p^2z}{pz(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2} }
-
\frac{(x^2 + q^2y^2 + \mathfrak{f}\cdot p^2 z^2)^{1 / 2}}{pz^2} 
= \frac{1}{p^2z^2 \lambda_2 } \biggl( \mathfrak{f}\cdot p^2z \biggr) - \frac{\lambda_2 }{z}
= \frac{1}{p^2z^2 \lambda_2 } \biggl( \mathfrak{f}\cdot p^2z  - p^2z \lambda_2^2 \biggr)
\, .
</math>
  </td>
</tr>
</table>
Hence,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_2^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2
+ \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2
+ \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{x}{p^2 z^2 \lambda_2} \biggr]^2
+ \biggl[ \frac{q^2y}{p^2 z^2 \lambda_2} \biggr]^2
+ \biggl[ \frac{ \mathfrak{f} }{z \lambda_2 }  - \frac{\lambda_2 }{z}\biggr]^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{x^2 + q^4 y^2}{p^4 z^4 \lambda_2^2} \biggr]
+ \biggl[ \frac{1}{z\lambda_2}\biggl( \mathfrak{f} - \lambda_2^2 \biggr) \biggr]^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{1}{p^4 z^4 \lambda_2^2}
\biggl[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ h_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{p^2 z^2 \lambda_2}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \, .
</math>
  </td>
</tr>
</table>
So, the associated unit vector is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr)
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath}  \biggl\{ \frac{x}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\}
+ \hat{\jmath}  \biggl\{ \frac{q^2 y}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\}
+ \hat{k} \biggl\{ \frac{p^2z(\mathfrak{f}-\lambda_2^2)}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\} \, .
</math>
  </td>
</table>
Checking orthogonality &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x\ell_{3D} \biggl\{ \frac{x}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\}
+ q^2 y\ell_{3D} \biggl\{ \frac{q^2 y}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\}
+ p^2 z \ell_{3D} \biggl\{ \frac{p^2z(\mathfrak{f}-\lambda_2^2)}{[ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} } \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} }
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, .
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} }
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, .
</math>
  </td>
</tr>
</table>
If <math>~\mathfrak{f} = 0</math>, we have &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~p^2 z (\mathfrak{f} - \lambda_2^2) </math>
  </td>
  <td align="center">
&nbsp; &nbsp; <math>~~~\rightarrow ~~~ </math>&nbsp; &nbsp;
  </td>
  <td align="left">
<math>~
\biggl[- p^2 z \lambda_2^2\biggr]_{\mathfrak{f} = 0}
=
- p^2 z\biggl[\frac{(x^2 + q^2y^2 + \cancelto{0}{\mathfrak{f} \cdot }p^2 z^2 )^{1 / 2}}{pz}  \biggr]^2
=
- \frac{(x^2 + q^2y^2  )}{z} \, ,</math>
  </td>
</tr>
</table>
which, in turn, means &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~[ x^2 + q^4 y^2 + p^4 z^2 (\cancelto{0}{\mathfrak{f}} - \lambda_2^2)^2 ]^{1 / 2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[ x^2 + q^4 y^2 + p^4 z^2 \lambda_2^4 ]^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ x^2 + q^4 y^2 + p^4 z^2 \biggl[\frac{(x^2 + q^2y^2 + \cancelto{0}{\mathfrak{f}\cdot} p^2 z^2)^{1 / 2}}{pz}  \biggr]^4 \biggr\}^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ x^2 + q^4 y^2 + \biggl[\frac{(x^2 + q^2y^2 )^{2}}{z^2}  \biggr] \biggr\}^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(x^2 + q^4 y^2)^{1 / 2} \biggl[ 1 + \frac{(x^2 + q^2y^2 )}{z^2} \biggr]^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{(x^2 + q^4 y^2)^{1 / 2}}{z} \biggl[ z^2 + (x^2 + q^2y^2 ) \biggr]^{1 / 2} \, ,
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{ [ x^2 + q^4 y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)^2 ]^{1 / 2} }
\biggl\{ x^2 + q^4y^2 + p^4 z^2 (\mathfrak{f} - \lambda_2^2)\biggr\} \, .
</math>
  </td>
</tr>
</table>
===Speculation6===
====Determine &lambda;<sub>2</sub>====
This is very similar to the [[#Speculation2|above, Speculation2]].
Try,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{x y^{1/q^2}}{ z^{2/p^2}} \, ,
</math>
  </td>
</tr>
</table>
in which case,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\lambda_2}{x} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{x}{z^{2/p^2}} \biggl(\frac{1}{q^2}\biggr) y^{1/q^2 - 1}
=
\frac{\lambda_2}{q^2 y}
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial \lambda_2}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2\lambda_2}{p^2 z}
\, .
</math>
  </td>
</tr>
</table>
The associated scale factor is, then,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[
\biggl( \frac{\partial \lambda_2}{\partial x} \biggr)^2
+
\biggl( \frac{\partial \lambda_2}{\partial y} \biggr)^2
+
\biggl( \frac{\partial \lambda_2}{\partial z} \biggr)^2
\biggr]^{-1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[
\biggl( \frac{ \lambda_2}{x} \biggr)^2
+
\biggl( \frac{\lambda_2}{q^2y} \biggr)^2
+
\biggl( - \frac{2\lambda_2}{p^2z} \biggr)^2
\biggr]^{-1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{\lambda_2}\biggl[
\frac{ 1}{x^2}
+
\frac{1}{q^4y^2}
+
\frac{4}{p^4z^2}
\biggr]^{-1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{\lambda_2}\biggl[
\frac{ (q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2}{x^2 q^4 y^2 p^4 z^2}
\biggr]^{-1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{\lambda_2}\biggl[
\frac{x q^2 y p^2 z}{ \mathcal{D}}
\biggr] \, .
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathcal{D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math>
  </td>
</tr>
</table>
The associated unit vector is, then,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat{\imath} h_2 \biggl( \frac{\partial \lambda_2}{\partial x} \biggr)
+ \hat{\jmath} h_2 \biggl( \frac{\partial \lambda_2}{\partial y} \biggr)
+ \hat{k} h_2 \biggl( \frac{\partial \lambda_2}{\partial z} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl\{
\hat{\imath} \biggl( \frac{1}{x} \biggr)
+ \hat{\jmath}  \biggl( \frac{1}{q^2 y} \biggr)
+ \hat{k} \biggl( -\frac{2}{p^2 z} \biggr)
\biggr\} \ .
</math>
  </td>
</tr>
</table>
Recalling that the unit vector associated with the "first" coordinate is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 </math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\hat\imath (x \ell_{3D}) + \hat\jmath (q^2y \ell_{3D}) + \hat{k} (p^2 z \ell_{3D}) \, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\ell_{3D}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math>
  </td>
</tr>
</table>
let's check to see whether the "second" unit vector is orthogonal to the "first."
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}} \biggl[
1 + 1 - 2
\biggr] = 0 \, .
</math>
  </td>
</tr>
</table>
<font color="red">'''Hooray!'''</font>
====Direction Cosines for <i>Third</i> Unit Vector====
Now, what is the unit vector, <math>~\hat{e}_3</math>, that is simultaneously orthogonal to both these "first" and the "second" unit vectors?
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_3 \equiv \hat{e}_1 \times \hat{e}_2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\hat\imath \biggl[ ( e_{1y} )( e_{2z}) - ( e_{2y} )( e_{1z}) ) \biggl]
+ \hat\jmath \biggl[ ( e_{1z} )( e_{2x}) - ( e_{2z} )( e_{1x}) ) \biggl]
+ \hat{k} \biggl[ ( e_{1x} )( e_{2y}) - ( e_{2x} )( e_{1y}) ) \biggl]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}}
\biggl\{
\hat\imath \biggl[ \biggl( -\frac{2 q^2y}{p^2 z} \biggr) - \biggl( \frac{p^2z}{q^2y} \biggr)  \biggl]
+ \hat\jmath \biggl[ \biggl( \frac{p^2z}{x} \biggr) - \biggl(-\frac{2x}{p^2z} \biggr)  \biggl]
+ \hat{k} \biggl[ \biggl( \frac{x}{q^2y} \biggr) - \biggl( \frac{q^2y}{x} \biggr)  \biggl]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{(x q^2 y p^2 z) \ell_{3D}}{\mathcal{D}}
\biggl\{
-\hat\imath \biggl[ \frac{2 q^4y^2 + p^4z^2}{q^2 y p^2 z} \biggl]
+ \hat\jmath \biggl[ \frac{p^4z^2 + 2x^2}{xp^2 z}  \biggl]
+ \hat{k} \biggl[ \frac{x^2 - q^4y^2}{x q^2y} \biggl]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{\mathcal{D}}
\biggl\{
-\hat\imath \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]
+ \hat\jmath \biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]
+ \hat{k} \biggl[ p^2z( x^2 - q^4y^2 ) \biggl]
\biggr\} \, .
</math>
  </td>
</tr>
</table>
Is this a valid unit vector?  First, note that &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)
(x^2 + q^4y^2 + p^4 z^2 )
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(x^2 q^4 y^2 p^4 z^2 + x^4 p^4 z^2 + 4x^4q^4y^2)
+ (q^8 y^4 p^4 z^2 + x^2 q^4y^2 p^4 z^2 + 4x^2q^8y^4)
+(q^4 y^2 p^8 z^4 + x^2 p^8 z^4 + 4x^2q^4y^2 p^4 z^2)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
6x^2 q^4 y^2 p^4 z^2 + x^4(p^4 z^2 + 4 q^4y^2)
+ q^8 y^4(p^4 z^2  + 4x^2)
+p^8z^4(x^2 + q^4 y^2 )\, .
</math>
  </td>
</tr>
</table>
<span id="Eureka">Then we have,</span>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2}\hat{e}_3 \cdot \hat{e}_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]^2
+
\biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]^2
+
\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2(4 q^8y^4 + 4q^4y^2p^4z^2 + p^8z^4 )
+
q^4 y^2(p^8z^4 + 4x^2p^4z^2 + 4x^4 )
+
p^4z^2( x^4 - 2x^2q^4 y^2 + q^8y^4 )
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
4 x^2 q^8y^4 + 4x^2 q^4y^2p^4z^2 + x^2 p^8z^4
+
q^4 y^2p^8z^4 + 4x^2q^4 y^2p^4z^2 + 4x^4q^4 y^2
+
x^4p^4z^2 - 2x^2q^4 y^2p^4z^2 + q^8y^4p^4z^2 
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
6x^2 q^4y^2p^4z^2
+  p^8z^4 (x^2  +q^4 y^2)
+  x^4(4q^4 y^2 + p^4z^2)
+ q^8 y^4(4 x^2  + p^4z^2 )
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2} \, ,
</math>
  </td>
</tr>
</table>
which means that, <math>~\hat{e}_3\cdot \hat{e}_3 = 1</math>.  &nbsp; &nbsp;<font color="red">'''Hooray! Again (11/11/2020)!'''</font>
<table border="1" cellpadding="8" align="center">
<tr>
  <td align="center" colspan="9">'''Direction Cosine Components for T6 Coordinates'''</td>
</tr>
<tr>
  <td align="center"><math>~n</math></td>
  <td align="center"><math>~\lambda_n</math></td>
  <td align="center"><math>~h_n</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td>
  <td align="center"><math>~\gamma_{n1}</math></td>
  <td align="center"><math>~\gamma_{n2}</math></td>
  <td align="center"><math>~\gamma_{n3}</math></td>
</tr>
<tr>
  <td align="center"><math>~1</math></td>
  <td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td>
  <td align="center"><math>~\lambda_1 \ell_{3D}</math></td>
  <td align="center"><math>~\frac{x}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td>
  <td align="center"><math>~(x) \ell_{3D}</math></td>
  <td align="center"><math>~(q^2 y)\ell_{3D}</math></td>
  <td align="center"><math>~(p^2z) \ell_{3D}</math></td>
</tr>
<tr>
  <td align="center"><math>~2</math></td>
  <td align="center"><math>~\frac{x y^{1/q^2}}{ z^{2/p^2}}</math></td>
  <td align="center"><math>~\frac{1}{\lambda_2}\biggl[\frac{x q^2 y p^2 z}{ \mathcal{D}}\biggr] </math></td>
  <td align="center"><math>~\frac{\lambda_2}{x}</math></td>
  <td align="center"><math>~\frac{\lambda_2}{q^2 y}</math></td>
  <td align="center"><math>~-\frac{2\lambda_2}{p^2 z}</math></td>
  <td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{x}\biggr)</math></td>
  <td align="center"><math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{q^2y}\biggr)</math></td>
  <td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(-\frac{2}{p^2z}\biggr)</math></td>
</tr>
<tr>
  <td align="center"><math>~3</math></td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center"><math>~-\frac{\ell_{3D}}{\mathcal{D}}\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]</math></td>
  <td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]</math></td>
  <td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]</math></td>
</tr>
<tr>
  <td align="left" colspan="9">
<table border="0" cellpadding="8" align="center">
<tr>
  <td align="right">
<math>~\ell_{3D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\mathcal{D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors.
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_1 \cdot \hat{e}_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}^2}{\mathcal{D}}
\biggl\{
-x \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]
+ q^2 y  \biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]
+ p^2 z  \biggl[ p^2z( x^2 - q^4y^2 ) \biggl]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}^2}{\mathcal{D}}
\biggl\{
- (2 x^2q^4y^2 + x^2p^4z^2 )
+ (q^4 y^2 p^4z^2 + 2x^2 q^4 y^2)
+ ( x^2p^4z^2  - q^4y^2 p^4z^2  )
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
0 \, ,
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_2 \cdot \hat{e}_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{\mathcal{D}} \cdot \frac{x q^2 y p^2 z}{\mathcal{D}}
\biggl\{
- \biggl[ (2 q^4y^2 + p^4z^2 ) \biggl]
+  \biggl[ (p^4z^2 + 2x^2 )  \biggl]
- \biggl[ 2( x^2 - q^4y^2 ) \biggl]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
0 \, .
</math>
  </td>
</tr>
</table>
<font color="red">'''Q. E. D.'''</font>
<!-- TEST -->
====Search for <i>Third</i> Coordinate Expression====
Let's try &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\mathcal{D}^n \ell_{3D}^m </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{n / 2} (x^2 + q^4y^2 + p^4 z^2 )^{- m / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial \lambda_3}{\partial x_i}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\ell_{3D}^m \biggl[ \frac{n}{2} \biggl(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr)^{n / 2 - 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \mathcal{D}^n \biggl[ - \frac{m}{2} (x^2 + q^4y^2 + p^4 z^2 )^{- m / 2 - 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(x^2 + q^4y^2 + p^4 z^2 )\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\mathcal{D}^n \ell_{3D}^m \biggl[ \frac{n}{2} \biggl(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr)^{- 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \mathcal{D}^n \ell_{3D}^m \biggl[ - \frac{m}{2} (x^2 + q^4y^2 + p^4 z^2 )^{- 1} \biggr] \frac{\partial}{\partial x_i} \biggl[(x^2 + q^4y^2 + p^4 z^2 )\biggr] \, .
</math>
  </td>
</tr>
</table>
Hence,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{1}{\mathcal{D}^n \ell_{3D}^m} \cdot \frac{\partial \lambda_3}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{n}{2\mathcal{D}^2}\frac{\partial}{\partial x} \biggl[q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 \biggr]
-
\frac{m \ell_{3D}^2}{2} \frac{\partial}{\partial x} \biggl[ x^2 + q^4y^2 + p^4 z^2 \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x \biggl\{
\frac{n}{\mathcal{D}^2}\biggl[p^4 z^2 + 4q^4y^2 \biggr]
-
m \ell_{3D}^2
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~x \biggl\{
\frac{n (p^4 z^2 + 4q^4y^2)}{ ( q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2 ) }
-
\frac{m}{ ( x^2 + q^4y^2 + p^4 z^2 ) }
\biggr\}
</math>
  </td>
</tr>
</table>
This is overly cluttered!  Let's try, instead &hellip;
<table border="1" cellpadding="8" align="center" width="80%"><tr><td align="left">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~A \equiv \ell_{3D}^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4 z^2 ) \, ,</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp; </td>
  <td align="right">
<math>~B \equiv \mathcal{D}^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial A}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial A}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2q^4 y \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial A}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 2p^4 z\, ;</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~ \frac{\partial B}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x( 4q^4y^2 + p^4 z^2 ) \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial B}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2q^4 y (p^4 z^2 + 4x^2) \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{\partial B}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ 2p^4 z(q^4 y^2 + x^2)\, .</math>
  </td>
</tr>
</table>
</td></tr></table>
Now, let's assume that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_3</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{A}{B} \biggr)^{1 / 2} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~ \frac{ \partial \lambda_3}{\partial x_i}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{2 (AB)^{1 / 2}} \cdot \frac{\partial A}{\partial x_i}
-
\frac{A^{1 / 2}}{2 B^{3 / 2}} \cdot \frac{\partial B}{\partial x_i}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\lambda_3}{2AB}
\biggl[
B \cdot \frac{\partial A}{\partial x_i}
-
A \cdot \frac{\partial B}{\partial x_i}
\biggr]
\, .
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x_i}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) \cdot \frac{\partial A}{\partial x_i}
-
(x^2 + q^4y^2 + p^4 z^2 ) \cdot \frac{\partial B}{\partial x_i} \, .
</math>
  </td>
</tr>
</table>
<table border="1" cellpadding="8" align="center" width="80%"><tr><td align="left">
Looking ahead &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_3^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{\lambda_3}{2AB} \biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr] \biggr\}^2
+
\biggl\{ \frac{\lambda_3}{2AB} \biggl[
B \cdot \frac{\partial A}{\partial y}
-
A \cdot \frac{\partial B}{\partial y}
\biggr] \biggr\}^2
+
\biggl\{ \frac{\lambda_3}{2AB} \biggl[
B \cdot \frac{\partial A}{\partial z}
-
A \cdot \frac{\partial B}{\partial z}
\biggr] \biggr\}^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \biggl[\frac{2AB}{\lambda_3}  \biggr]^2 h_3^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial y}
-
A \cdot \frac{\partial B}{\partial y}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial z}
-
A \cdot \frac{\partial B}{\partial z}
\biggr]^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \biggl[\frac{\lambda_3}{2AB}  \biggr] h_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{\biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial y}
-
A \cdot \frac{\partial B}{\partial y}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial z}
-
A \cdot \frac{\partial B}{\partial z}
\biggr]^2
\biggr\}^{-1 / 2}
</math>
  </td>
</tr>
</table>
Then, for example,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\gamma_{31} \equiv h_3 \biggl(\frac{\partial \lambda_3}{\partial x} \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr]
\biggl\{\biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial y}
-
A \cdot \frac{\partial B}{\partial y}
\biggr]^2
+
\biggl[
B \cdot \frac{\partial A}{\partial z}
-
A \cdot \frac{\partial B}{\partial z}
\biggr]^2
\biggr\}^{-1 / 2}
</math>
  </td>
</tr>
</table>
</td></tr></table>
As a result, we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial x}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x \biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
(x^2 + q^4y^2 + p^4 z^2 ) ( 4q^4y^2 + p^4 z^2 ) \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x \biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
(4x^2q^4y^2 + x^2 p^4 z^2 + 4q^8y^4 + q^4y^2 p^4z^2 + 4q^4y^2 p^4 z^2 + p^8z^4) \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2x \biggl[ 
-
(4q^8y^4  + 4q^4y^2 p^4 z^2 + p^8z^4) \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-2x (2q^4y^2  + p^4z^2)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-8x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln\lambda_3}{\partial \ln{x}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-\biggl[ 2x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)\biggr]^2 \, ;
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial y}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2q^4y\biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
(x^2 + q^4y^2 + p^4 z^2 ) (p^4 z^2 + 4x^2)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2q^4y\biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
( x^2p^4z^2 + 4x^4 + q^4y^2p^4z^2 + 4x^2q^4y^2 + p^8z^4 + 4x^2p^4z^2)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-2q^4y( 4x^4 + p^8z^4 + 4x^2p^4z^2)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-2q^4y( 2x^2 + p^4z^2 )^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln\lambda_3}{\partial \ln{y} }</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^2 \, ;
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ \frac{2AB}{\lambda_3} \biggr] \frac{\partial \lambda_3}{\partial z}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2p^4 z \biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
(x^2 + q^4y^2 + p^4 z^2 ) (q^4 y^2 + x^2)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2p^4 z \biggl[
(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2) 
-
(x^2q^4y^2 + x^4 + q^8y^4 + x^2q^4y^2 + q^4y^2p^4z^2 + x^2p^4z^2)
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2p^4 z \biggl[
( 2x^2q^4y^2) 
-
( x^4 + q^8y^4 )
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-2p^4 z \biggl[
x^4 + q^8y^4
- 2x^2q^4y^2 
\biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-2p^4 z (x^2 - q^4y^2 )^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\biggl[ AB \biggr] \frac{\partial \ln \lambda_3}{\partial \ln{z}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-4 \biggl[ \biggl( \frac{p^4 z^2}{4} \biggr) (x^2 - q^4y^2 )^2 \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-\biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^2
\, .
</math>
  </td>
</tr>
</table>
<font color="red">'''Wow! &nbsp; Really close!''' (13 November 2020)</font>
Just for fun, let's see what we get for <math>~h_3</math>.  It is given by the expression,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_3^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{\partial \lambda_3}{\partial x} \biggr)^2
+\biggl( \frac{\partial \lambda_3}{\partial y} \biggr)^2
+\biggl( \frac{\partial \lambda_3}{\partial z} \biggr)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{\lambda_3}{ABx} \biggl[ 2x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)\biggr]^2 \biggr\}^2
+\biggl\{ \frac{\lambda_3}{ABy} \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^2 \biggr\}^2
+\biggl\{ \frac{\lambda_3}{ABz} \biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^2 \biggr\}^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~ \biggl[ \frac{AB}{\lambda_3}\biggr]^2 h_3^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{1}{x^2} \biggl[ 2x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)\biggr]^4 \biggr\}
+\biggl\{ \frac{1}{y^2} \biggl[2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr) \biggr]^4 \biggr\}
+\biggl\{ \frac{1}{z^2} \biggl[ 2\biggl( \frac{p^2 z}{2} \biggr) (x^2 - q^4y^2 ) \biggr]^4 \biggr\}
</math>
  </td>
</tr>
</table>
====Fiddle Around====
Let &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathcal{L}_x</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
- \biggl[
B \cdot \frac{\partial A}{\partial x}
-
A \cdot \frac{\partial B}{\partial x}
\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2}{x} \biggl[ 2x \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)\biggr]^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8x~\mathfrak{F}_x(y,z)
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\mathcal{L}_y</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
- \biggl[
B \cdot \frac{\partial A}{\partial y}
-
A \cdot \frac{\partial B}{\partial y}
\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
8q^4y\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{y} \biggl[ 2q^2y\biggl( x^2 + \frac{p^4z^2}{2} \biggr)\biggr]^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8y~\mathfrak{F}_y(x,z)
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\mathcal{L}_z</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
-\biggl[
B \cdot \frac{\partial A}{\partial z}
-
A \cdot \frac{\partial B}{\partial z}
\biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2p^4 z \biggl(x^2 - q^4y^2 \biggr)^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{z} \biggl[p^2 z \biggl(x^2 - q^4y^2 \biggr)\biggr]^2
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8z~\mathfrak{F}_z(x,y)
</math>
  </td>
</tr>
</table>
With this shorthand in place, we can write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\hat{e}_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{\ell_{3D}}{\mathcal{D}}
\biggl\{
-\hat\imath \biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]
+ \hat\jmath \biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]
+ \hat{k} \biggl[ p^2z( x^2 - q^4y^2 ) \biggl]
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(AB)^{1 / 2}}
\biggl\{
-\hat\imath \biggl[ \frac{x \mathcal{L}_x}{2} \biggl]^{1 / 2}
+ \hat\jmath \biggl[ \frac{y \mathcal{L}_y}{2} \biggl]^{1 / 2}
+ \hat{k} \biggl[ \frac{z \mathcal{L}_z}{2} \biggl]^{1 / 2}
\biggr\}
\, .
</math>
  </td>
</tr>
</table>
We therefore also recognize that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial x}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{x \mathcal{L}_x}{2} \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{1}{(AB)^{1 / 2}} \biggl[ 4x^2 ~\mathfrak{F}_x \biggl]^{1 / 2} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial y}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{y \mathcal{L}_y}{2} \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(AB)^{1 / 2}} \biggl[ 4y^2~\mathfrak{F}_y \biggl]^{1 / 2} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~h_3 \biggl(\frac{\partial \lambda_3}{\partial z}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(AB)^{1 / 2}} \biggl[ \frac{z \mathcal{L}_z}{2} \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{(AB)^{1 / 2}} \biggl[ 4z^2~\mathfrak{F}_z \biggl]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
Now, if &#8212; and it is a BIG "if" &#8212; <math>~h_3 = h_0(AB)^{-1 / 2}</math>, then we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial x}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\biggl[ 4x^2 ~\mathfrak{F}_x \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-2x \biggl[ \mathfrak{F}_x \biggl]^{1 / 2} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial y}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ 4y^2~\mathfrak{F}_y \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2y \biggl[ \mathfrak{F}_y \biggl]^{1 / 2} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~h_0 \biggl(\frac{\partial \lambda_3}{\partial z}\biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ 4z^2~\mathfrak{F}_z \biggl]^{1 / 2}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2z\biggl[ \mathfrak{F}_z \biggl]^{1 / 2} \, ,
</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\Rightarrow~~~ h_0 \lambda_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-x^2 \biggl[ \mathfrak{F}_x \biggl]^{1 / 2}
+ y^2 \biggl[ \mathfrak{F}_y \biggl]^{1 / 2}
+ z^2 \biggl[ \mathfrak{F}_z \biggl]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
But if this is the correct expression for <math>~\lambda_3</math> and its three partial derivatives, then it must be true that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_3^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{\partial \lambda_3}{\partial x}\biggr)^2
+
\biggl(\frac{\partial \lambda_3}{\partial y}\biggr)^2
+
\biggl(\frac{\partial \lambda_3}{\partial z}\biggr)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \biggl( \frac{h_3}{h_0}\biggr)^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
4x^2 \biggl[ \mathfrak{F}_x \biggl]
+
4y^2 \biggl[ \mathfrak{F}_y \biggl]
+
4z^2\biggl[ \mathfrak{F}_z \biggl]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
4x^2 \biggl[ \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)^2 \biggl]
+
4y^2 \biggl[ q^4\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2\biggl]
+
4z^2\biggl[ \frac{p^4}{4}\biggl(x^2 - q^4y^2 \biggr)^2 \biggl]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2 (2q^4y^2  + p^4z^2 )^2
+
q^4 y^2( 2x^2 + p^4z^2 )^2
+
p^4 z^2 (x^2 - q^4y^2 )^2
</math>
  </td>
</tr>
</table>
Well &hellip; the right-hand side of this expression is identical to the right-hand side of the [[#Eureka|above expression]], where we showed that it equals <math>~(\ell_{3D}/\mathcal{D})^{-2}</math>.  That is to say, we are now showing that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl( \frac{h_3}{h_0}\biggr)^{-2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{\ell_{3D}}{\mathcal{D}} \biggr)^{-2} = [AB]</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{h_3}{h_0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(AB)^{-1 / 2} \, .</math>
  </td>
</tr>
</table>
And this is ''precisely'' what, just a few lines above, we hypothesized the functional expression for <math>~h_3</math> ought to be.  <font color="red">'''EUREKA!'''</font>
====Summary====
In summary, then &hellip;
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_3</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
-x^2 \biggl[ \mathfrak{F}_x \biggl]^{1 / 2}
+ y^2 \biggl[ \mathfrak{F}_y \biggl]^{1 / 2}
+ z^2 \biggl[ \mathfrak{F}_z \biggl]^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-x^2 \biggl[\biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)^2 \biggl]^{1 / 2}
+ y^2 \biggl[ q^4\biggl( x^2 + \frac{p^4z^2}{2} \biggr)^2\biggl]^{1 / 2}
+ z^2 \biggl[ \frac{p^4}{4} \biggl(x^2 - q^4y^2 \biggr)^2 \biggl]^{1 / 2}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-x^2 \biggl(q^4y^2  + \frac{p^4z^2}{2} \biggr)
+ q^2y^2 \biggl( x^2 + \frac{p^4z^2}{2} \biggr)
+ \frac{p^2 z^2}{2}  \biggl(x^2 - q^4y^2 \biggr) \, ,
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~h_3</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(AB)^{-1 / 2} </math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[
(x^2 + q^4y^2 + p^4 z^2 )(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)
\biggr]^{-1 / 2} \, .</math>
  </td>
</tr>
</table>
No!  Once again this does not work.  The direction cosines &#8212; and, hence, the components of the <math>~\hat{e}_3</math> unit vector &#8212; are not correct!
===Speculation7===
<table border="1" cellpadding="8" align="center">
<tr>
  <td align="center" colspan="9">'''Direction Cosine Components for T6 Coordinates'''</td>
</tr>
<tr>
  <td align="center"><math>~n</math></td>
  <td align="center"><math>~\lambda_n</math></td>
  <td align="center"><math>~h_n</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td>
  <td align="center"><math>~\gamma_{n1}</math></td>
  <td align="center"><math>~\gamma_{n2}</math></td>
  <td align="center"><math>~\gamma_{n3}</math></td>
</tr>
<tr>
  <td align="center"><math>~1</math></td>
  <td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td>
  <td align="center"><math>~\lambda_1 \ell_{3D}</math></td>
  <td align="center"><math>~\frac{x}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td>
  <td align="center"><math>~(x) \ell_{3D}</math></td>
  <td align="center"><math>~(q^2 y)\ell_{3D}</math></td>
  <td align="center"><math>~(p^2z) \ell_{3D}</math></td>
</tr>
<tr>
  <td align="center"><math>~2</math></td>
  <td align="center"><math>~\frac{x y^{1/q^2}}{ z^{2/p^2}}</math></td>
  <td align="center"><math>~\frac{1}{\lambda_2}\biggl[\frac{x q^2 y p^2 z}{ \mathcal{D}}\biggr] </math></td>
  <td align="center"><math>~\frac{\lambda_2}{x}</math></td>
  <td align="center"><math>~\frac{\lambda_2}{q^2 y}</math></td>
  <td align="center"><math>~-\frac{2\lambda_2}{p^2 z}</math></td>
  <td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{x}\biggr)</math></td>
  <td align="center"><math>~ \frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(\frac{1}{q^2y}\biggr)</math></td>
  <td align="center"><math>~\frac{x q^2 y p^2 z}{\mathcal{D}} \biggl(-\frac{2}{p^2z}\biggr)</math></td>
</tr>
<tr>
  <td align="center"><math>~3</math></td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center"><math>~-\frac{\ell_{3D}}{\mathcal{D}}\biggl[ x(2 q^4y^2 + p^4z^2 ) \biggl]</math></td>
  <td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ q^2 y(p^4z^2 + 2x^2 )  \biggl]</math></td>
  <td align="center"><math>~\frac{\ell_{3D}}{\mathcal{D}}\biggl[ p^2z( x^2 - q^4y^2 ) \biggl]</math></td>
</tr>
<tr>
  <td align="left" colspan="9">
<table border="0" cellpadding="8" align="center">
<tr>
  <td align="right">
<math>~\ell_{3D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4 z^2 )^{- 1 / 2} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\mathcal{D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)^{1 / 2} \, .</math>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
On my white-board I have shown that, if
<div align="center">
<math>~\lambda_3 \equiv \ell_{3D} \mathcal{D} \, ,</math>
</div>
then everything will work out as long as,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathcal{L}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl(\frac{\mathcal{D}}{\ell_{3D}} \biggr)^2 \frac{1}{\ell_{3D}^4} \, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathcal{L}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
x^2 (2q^4 y^2 + p^4z^2 )^4
+
q^8 y^2 (2x^2 + p^4 z^2)^4
+
p^8z^2( x^2 - q^4y^2)^4
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2 (4q^8 y^4 + 4q^4y^2p^4z^2 + p^8z^4 )^2
+
q^8 y^2 (4x^4 + 4x^2p^4z^2 + p^8 z^4)^2
+
p^8z^2( x^4 - 2x^2q^4y^2 + q^8y^4)^2
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2
[16q^{16}y^8 + 16q^{12}y^6p^4z^2 + 4q^8y^4p^8z^4 + 16q^{12}y^6p^4z^2 + 16q^8y^4p^8z^4 + 4q^4y^2p^{12}z^6 + 4q^8y^4p^8z^4 + 4q^4y^2 p^{12}z^6 + p^{16}z^8]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
q^8 y^2
[16x^8 + 16x^6p^4z^2 + 4x^4p^8z^4 + 16x^6p^4z^2 + 16x^4p^8z^4 + 4x^2p^{12}z^6 + 4x^4p^8z^4 + 4x^2p^{12}z^6 + p^{16}z^8]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
p^8z^2
[x^8 - 2x^6q^4y^2 + x^4q^8y^4 - 2x^6q^4y^2 + 4x^4q^8y^4 - 2x^2q^{12}y^6 + x^4q^8y^4 - 2x^2q^{12}y^6 + q^{16}y^8]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
x^2
[16q^{16}y^8 + 32q^{12}y^6p^4z^2 + 24q^8y^4p^8z^4 + 8q^4y^2p^{12}z^6 + p^{16}z^8]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
q^8 y^2
[16x^8 + 32x^6p^4z^2 + 24x^4p^8z^4  + 8x^2p^{12}z^6 + p^{16}z^8]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+
p^8z^2
[x^8 - 4x^6q^4y^2 + 6x^4q^8y^4 - 4x^2q^{12}y^6 + q^{16}y^8]
</math>
  </td>
</tr>
</table>
Let's check this out.
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathrm{RHS}~\equiv \biggl(\frac{\mathcal{D}}{\ell_{3D}} \biggr)^2 \frac{1}{\ell_{3D}^4}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)(x^2 + q^4y^2 + p^4 z^2 )^3</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(x^2 + q^4y^2 + p^4 z^2 )(q^4 y^2 p^4 z^2 + x^2 p^4 z^2 + 4x^2q^4y^2)[x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[(6x^2q^4 y^2 p^4 z^2 + x^4 p^4 z^2 + 4x^4q^4y^2)
+
(q^8 y^4 p^4 z^2 + 4x^2q^8 y^4)
+
(q^4 y^2 p^8 z^4 + x^2 p^8 z^4 )]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~\times [x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[6x^2q^4 y^2 p^4 z^2 + x^4(p^4 z^2 + 4q^4y^2)
+
q^8 y^4(p^4 z^2 + 4x^2)
+
p^8 z^4 (q^4 y^2 + x^2 )]
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~\times [x^4 + 2x^2q^4y^2 + 2x^2p^4z^2 +q^8y^4 + 2q^4y^2p^4z^2 + p^8z^4]</math>
  </td>
</tr>
</table>


{{ SGFfooter }}
{{ SGFfooter }}

Latest revision as of 17:13, 23 July 2021

Concentric Ellipsoidal (T6) Coordinates (Part 2)

Orthogonal Coordinates

Speculation5

Spherical Coordinates

rcosθ

=

z,

rsinθ

=

(x2+y2)1/2,

tanφ

=

yx.

Use λ1 Instead of r

Here, as above, we define,

λ12

x2+q2y2+p2z2

Using this expression to eliminate "x" (in favor of λ1) in each of the three spherical-coordinate definitions, we obtain,

r2x2+y2+z2

=

λ12y2(q21)z2(p21);

tan2θx2+y2z2

=

1z2[λ12y2(q21)p2z2];

1tan2φx2y2

=

λ12p2z2y2q2.

After a bit of additional algebraic manipulation, we find that,

z2λ12

=

(1+tan2φ)𝒟2,

y2λ12

=

[𝒟2tan2φp2tan2φ(1+tan2φ)(1+q2tan2φ)𝒟2],

x2λ12

=

1q2(y2λ12)p2(z2λ12),

where,

𝒟2

[(1+q2tan2φ)(p2+tan2θ)p2(q21)tan2φ].

As a check, let's set q2=p2=1, which should reduce to the normal spherical coordinate system.

λ12

r2,

      and,      

𝒟2

[(1+tan2φ)(1+tan2θ)].

z2λ12

11+tan2θ=cos2θ=z2r2;

y2λ12

[(1+tan2φ)(1+tan2θ)tan2φtan2φ(1+tan2φ)(1+tan2φ)(1+tan2φ)(1+tan2θ)]

 

=

tan2φ(1+tan2φ)[tan2θ(1+tan2θ)]=sin2θsin2φ=y2r2;

x2λ12

1(y2λ12)(z2λ12),

 

1sin2θsin2φcos2θ=sin2θsin2φ+sin2θ=sin2θcos2φ=x2r2.

Relationship To T3 Coordinates

If we set, q=1, but continue to assume that p>1, we expect to see a representation that resembles our previously discussed, T3 Coordinates. Note, for example, that the new "radial" coordinate is,

λ12

(ϖ2+p2z2),

      and,      

𝒟2

[(1+tan2φ)(p2+tan2θ)].

p2z2λ12

p2(p2+tan2θ)=1(1+p2tan2θ),

ϖ2λ12=x2λ12+y2λ12

1p2(z2λ12)=[11(1+p2tan2θ)].

We also see that,

ϖ2p2z2

(1+p2tan2θ)[11(1+p2tan2θ)]=p2tan2θ.

Again Consider Full 3D Ellipsoid

Let's try to replace everywhere, [ϖ/(pz)]2=p2tan2θ with λ2. This gives,

𝒟2p2

[(1+q2tan2φ)λ2(q21)tan2φ].

which means that,

p2z2λ12

=

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]=1/sin2φ[q2λ2Q2(q21)],

q2y2λ12

=

q2tan2φ(1+q2tan2φ)q2tan2φ(1+tan2φ)(1+q2tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]}

 

=

1Q2{11/sin2φ[q2λ2Q2(q21)]}=1Q2[][[]1sin2φ],

x2λ12

=

1q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

 

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

1q2tan2φ(1+q2tan2φ){(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

11Q2{1/sin2φ[q2λ2Q2(q21)]}=1Q2[]{Q2[][]Q2sin2φ},

x2+q2y2λ12

=

1[1+q2tan2φ(1+q2tan2φ)]{(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}.

Now, notice that,

q2y2Q2λ12

=

11[]sin2φ,

and,

x2λ12+1Q2

=

11[]sin2φ.

Hence,

x2λ12+1Q2

=

q2y2Q2λ12

0

=

Q4(q2y2λ12)Q2(x2λ12)1

 

=

Q4Q2(x2q2y2)(λ12q2y2),

where,

Q2

1+q2tan2φq2tan2φ.

Solving the quadratic equation, we have,

Q2

=

12{(x2q2y2)±[(x2q2y2)2+4(λ12q2y2)]1/2}

 

=

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Tentative Summary

λ1

(x2+q2y2+p2z2)1/2,

λ2

(x2+y2)1/2pz,

λ3=Q2

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Partial Derivatives & Scale Factors

First Coordinate

λ1x

=

xλ1,

λ1y

=

q2yλ1,

λ1z

=

p2zλ1.

h12

=

(λ1x)2+(λ1y)2+(λ1z)2

=

(xλ1)2+(q2yλ1)2+(p2zλ1)2.

h1

=

λ13D,

where,

3D(x2+q4y2+p4z2)1/2.

As a result, the associated unit vector is,

e^1

=

ı^h1(λ1x)+ȷ^h1(λ1y)+k^h1(λ1z)

 

=

ı^x3D+ȷ^q2y3D+k^p2z3D.

Notice that,

e^1e^1

=

(x2+q4y2+p4z2)3D2=1.


Second Coordinate (1st Try)

λ2x

=

1pz[x(x2+y2)1/2],

λ2y

=

1pz[y(x2+y2)1/2],

λ2z

=

(x2+y2)1/2pz2.

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

{1pz[x(x2+y2)1/2]}2+{1pz[y(x2+y2)1/2]}2+{(x2+y2)1/2pz2}2

 

=

{[x2(x2+y2)p2z2]}+{[y2(x2+y2)p2z2]}+{(x2+y2)p2z4}

 

=

1p2z2+(x2+y2)p2z4=(x2+y2+z2)p2z4

h2

=

pz2r

As a result, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^[xzr(x2+y2)1/2]+ȷ^[yzr(x2+y2)1/2]k^[(x2+y2)1/2r].

Notice that,

e^2e^2

=

[x2z2r2(x2+y2)]+[y2z2r2(x2+y2)]+[(x2+y2)r2]=1.

Let's check to see if this "second" unit vector is orthogonal to the "first."

e^1e^2

=

x3D[xzr(x2+y2)1/2]+q2y3D[yzr(x2+y2)1/2]p2z3D[(x2+y2)1/2r]

 

=

3D{[x2zr(x2+y2)1/2]+[q2y2zr(x2+y2)1/2][p2z(x2+y2)1/2r]}

 

=

z3Dr(x2+y2)1/2{[x2]+[q2y2][p2(x2+y2)]}

 

0 .


Second Coordinate (2nd Try)

Let's try,

λ2

=

[(x2+q2y2+𝔣p2z2)1/2pz],

λ2x

=

xpz(x2+q2y2+𝔣p2z2)1/2=xp2z2λ2,

λ2y

=

q2ypz(x2+q2y2+𝔣p2z2)1/2=q2yp2z2λ2,

λ2z

=

𝔣p2zpz(x2+q2y2+𝔣p2z2)1/2(x2+q2y2+𝔣p2z2)1/2pz2=1p2z2λ2(𝔣p2z)λ2z=1p2z2λ2(𝔣p2zp2zλ22).

Hence,

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

[xp2z2λ2]2+[q2yp2z2λ2]2+[𝔣zλ2λ2z]2

 

=

[x2+q4y2p4z4λ22]+[1zλ2(𝔣λ22)]2

 

=

1p4z4λ22[x2+q4y2+p4z2(𝔣λ22)2]

h2

=

p2z2λ2[x2+q4y2+p4z2(𝔣λ22)2]1/2.

So, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+ȷ^{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+k^{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}.

Checking orthogonality …

e^1e^2

=

x3D{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+q2y3D{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+p2z3D{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

If 𝔣=0, we have …

p2z(𝔣λ22)

       

[p2zλ22]𝔣=0=p2z[(x2+q2y2+𝔣0p2z2)1/2pz]2=(x2+q2y2)z,

which, in turn, means …

[x2+q4y2+p4z2(𝔣0λ22)2]1/2

=

[x2+q4y2+p4z2λ24]1/2

 

=

{x2+q4y2+p4z2[(x2+q2y2+𝔣0p2z2)1/2pz]4}1/2

 

=

{x2+q4y2+[(x2+q2y2)2z2]}1/2

 

=

(x2+q4y2)1/2[1+(x2+q2y2)z2]1/2

 

=

(x2+q4y2)1/2z[z2+(x2+q2y2)]1/2,

and,

e^1e^2

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

Speculation6

Determine λ2

This is very similar to the above, Speculation2. Try,

λ2

=

xy1/q2z2/p2,

in which case,

λ2x

=

λ2x,

λ2y

=

xz2/p2(1q2)y1/q21=λ2q2y,

λ2z

=

2λ2p2z.

The associated scale factor is, then,

h2

=

[(λ2x)2+(λ2y)2+(λ2z)2]1/2

 

=

[(λ2x)2+(λ2q2y)2+(2λ2p2z)2]1/2

 

=

1λ2[1x2+1q4y2+4p4z2]1/2

 

=

1λ2[(q4y2p4z2+x2p4z2+4x2q4y2x2q4y2p4z2]1/2

 

=

1λ2[xq2yp2z𝒟].

where,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

The associated unit vector is, then,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

xq2yp2z𝒟{ı^(1x)+ȷ^(1q2y)+k^(2p2z)} .

Recalling that the unit vector associated with the "first" coordinate is,

e^1

ı^(x3D)+ȷ^(q2y3D)+k^(p2z3D),

where,

3D

=

(x2+q4y2+p4z2)1/2,

let's check to see whether the "second" unit vector is orthogonal to the "first."

e^1e^2

=

(xq2yp2z)3D𝒟[1+12]=0.

Hooray!


Direction Cosines for Third Unit Vector

Now, what is the unit vector, e^3, that is simultaneously orthogonal to both these "first" and the "second" unit vectors?

e^3e^1×e^2

=

ı^[(e1y)(e2z)(e2y)(e1z))]+ȷ^[(e1z)(e2x)(e2z)(e1x))]+k^[(e1x)(e2y)(e2x)(e1y))]

 

=

(xq2yp2z)3D𝒟{ı^[(2q2yp2z)(p2zq2y)]+ȷ^[(p2zx)(2xp2z)]+k^[(xq2y)(q2yx)]}

 

=

(xq2yp2z)3D𝒟{ı^[2q4y2+p4z2q2yp2z]+ȷ^[p4z2+2x2xp2z]+k^[x2q4y2xq2y]}

 

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}.

Is this a valid unit vector? First, note that …

(3D𝒟)2

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)

 

=

(x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+x2q4y2p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4+4x2q4y2p4z2)

 

=

6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(x2+q4y2).

Then we have,

(3D𝒟)2e^3e^3

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2

 

=

x2(4q8y4+4q4y2p4z2+p8z4)+q4y2(p8z4+4x2p4z2+4x4)+p4z2(x42x2q4y2+q8y4)

 

=

4x2q8y4+4x2q4y2p4z2+x2p8z4+q4y2p8z4+4x2q4y2p4z2+4x4q4y2+x4p4z22x2q4y2p4z2+q8y4p4z2

 

=

6x2q4y2p4z2+p8z4(x2+q4y2)+x4(4q4y2+p4z2)+q8y4(4x2+p4z2)

 

=

(3D𝒟)2,

which means that, e^3e^3=1.    Hooray! Again (11/11/2020)!

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors.

e^1e^3

=

3D2𝒟{x[x(2q4y2+p4z2)]+q2y[q2y(p4z2+2x2)]+p2z[p2z(x2q4y2)]}

 

=

3D2𝒟{(2x2q4y2+x2p4z2)+(q4y2p4z2+2x2q4y2)+(x2p4z2q4y2p4z2)}

 

=

0,

and,

e^2e^3

=

3D𝒟xq2yp2z𝒟{[(2q4y2+p4z2)]+[(p4z2+2x2)][2(x2q4y2)]}

 

=

0.

Q. E. D.

Search for Third Coordinate Expression

Let's try …

λ3

=

𝒟n3Dm

 

=

(q4y2p4z2+x2p4z2+4x2q4y2)n/2(x2+q4y2+p4z2)m/2

λ3xi

=

3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)n/21]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n[m2(x2+q4y2+p4z2)m/21]xi[(x2+q4y2+p4z2)]

 

=

𝒟n3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)1]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n3Dm[m2(x2+q4y2+p4z2)1]xi[(x2+q4y2+p4z2)].


Hence,

1𝒟n3Dmλ3x

=

n2𝒟2x[q4y2p4z2+x2p4z2+4x2q4y2]m3D22x[x2+q4y2+p4z2]

 

=

x{n𝒟2[p4z2+4q4y2]m3D2}

 

=

x{n(p4z2+4q4y2)(q4y2p4z2+x2p4z2+4x2q4y2)m(x2+q4y2+p4z2)}

This is overly cluttered! Let's try, instead …

A3D2

=

(x2+q4y2+p4z2),

      and,      

B𝒟2

=

(q4y2p4z2+x2p4z2+4x2q4y2)

Ax

=

2x,

Ay

=

2q4y,

Az

=

2p4z;

Bx

=

2x(4q4y2+p4z2),

By

=

2q4y(p4z2+4x2),

Bz

=

2p4z(q4y2+x2).


Now, let's assume that,

λ3

(AB)1/2,

λ3xi

=

12(AB)1/2AxiA1/22B3/2Bxi

 

=

λ32AB[BAxiABxi].

[2ABλ3]λ3xi

=

(q4y2p4z2+x2p4z2+4x2q4y2)Axi(x2+q4y2+p4z2)Bxi.

Looking ahead …

h32

=

{λ32AB[BAxABx]}2+{λ32AB[BAyABy]}2+{λ32AB[BAzABz]}2

[2ABλ3]2h32

=

[BAxABx]2+[BAyABy]2+[BAzABz]2

[λ32AB]h3

=

{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

Then, for example,

γ31h3(λ3x)

=

[BAxABx]{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

As a result, we have,

[2ABλ3]λ3x

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(4q4y2+p4z2)]

 

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(4x2q4y2+x2p4z2+4q8y4+q4y2p4z2+4q4y2p4z2+p8z4)]

 

=

2x[(4q8y4+4q4y2p4z2+p8z4)]

 

=

2x(2q4y2+p4z2)2

 

=

8x(q4y2+p4z22)2

[AB]lnλ3lnx

=

[2x(q4y2+p4z22)]2;

and,

[2ABλ3]λ3y

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(p4z2+4x2)]

 

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2p4z2+4x4+q4y2p4z2+4x2q4y2+p8z4+4x2p4z2)]

 

=

2q4y(4x4+p8z4+4x2p4z2)

 

=

2q4y(2x2+p4z2)2

[AB]lnλ3lny

=

[2q2y(x2+p4z22)]2;

and,

[2ABλ3]λ3z

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(q4y2+x2)]

 

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2q4y2+x4+q8y4+x2q4y2+q4y2p4z2+x2p4z2)]

 

=

2p4z[(2x2q4y2)(x4+q8y4)]

 

=

2p4z[x4+q8y42x2q4y2]

 

=

2p4z(x2q4y2)2

[AB]lnλ3lnz

=

4[(p4z24)(x2q4y2)2]

 

=

[2(p2z2)(x2q4y2)]2.

Wow!   Really close! (13 November 2020)

Just for fun, let's see what we get for h3. It is given by the expression,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

 

=

{λ3ABx[2x(q4y2+p4z22)]2}2+{λ3ABy[2q2y(x2+p4z22)]2}2+{λ3ABz[2(p2z2)(x2q4y2)]2}2

[ABλ3]2h32

=

{1x2[2x(q4y2+p4z22)]4}+{1y2[2q2y(x2+p4z22)]4}+{1z2[2(p2z2)(x2q4y2)]4}

Fiddle Around

Let …

x

[BAxABx]

=

8x(q4y2+p4z22)2

=

2x[2x(q4y2+p4z22)]2

=

8x𝔉x(y,z)

y

[BAyABy]

=

8q4y(x2+p4z22)2

=

2y[2q2y(x2+p4z22)]2

=

8y𝔉y(x,z)

z

[BAzABz]

=

2p4z(x2q4y2)2

=

2z[p2z(x2q4y2)]2

=

8z𝔉z(x,y)

With this shorthand in place, we can write,

e^3

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}

 

=

1(AB)1/2{ı^[xx2]1/2+ȷ^[yy2]1/2+k^[zz2]1/2}.

We therefore also recognize that,

h3(λ3x)

=

1(AB)1/2[xx2]1/2

=

1(AB)1/2[4x2𝔉x]1/2,

h3(λ3y)

=

1(AB)1/2[yy2]1/2

=

1(AB)1/2[4y2𝔉y]1/2,

h3(λ3z)

=

1(AB)1/2[zz2]1/2

=

1(AB)1/2[4z2𝔉z]1/2.

Now, if — and it is a BIG "if" — h3=h0(AB)1/2, then we have,

h0(λ3x)

=

[4x2𝔉x]1/2

=

2x[𝔉x]1/2,

h0(λ3y)

=

[4y2𝔉y]1/2

=

2y[𝔉y]1/2,

h0(λ3z)

=

[4z2𝔉z]1/2

=

2z[𝔉z]1/2,

h0λ3

=

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2.

But if this is the correct expression for λ3 and its three partial derivatives, then it must be true that,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

(h3h0)2

=

4x2[𝔉x]+4y2[𝔉y]+4z2[𝔉z]

 

=

4x2[(q4y2+p4z22)2]+4y2[q4(x2+p4z22)2]+4z2[p44(x2q4y2)2]

 

=

x2(2q4y2+p4z2)2+q4y2(2x2+p4z2)2+p4z2(x2q4y2)2

Well … the right-hand side of this expression is identical to the right-hand side of the above expression, where we showed that it equals (3D/𝒟)2. That is to say, we are now showing that,

(h3h0)2

=

(3D𝒟)2=[AB]

h3h0

=

(AB)1/2.

And this is precisely what, just a few lines above, we hypothesized the functional expression for h3 ought to be. EUREKA!

Summary

In summary, then …

λ3

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2

 

=

x2[(q4y2+p4z22)2]1/2+y2[q4(x2+p4z22)2]1/2+z2[p44(x2q4y2)2]1/2

 

=

x2(q4y2+p4z22)+q2y2(x2+p4z22)+p2z22(x2q4y2),

and,


h3

=

(AB)1/2

 

=

[(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)]1/2.

No! Once again this does not work. The direction cosines — and, hence, the components of the e^3 unit vector — are not correct!

Speculation7

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


On my white-board I have shown that, if

λ33D𝒟,

then everything will work out as long as,

=

(𝒟3D)213D4,

where,

x2(2q4y2+p4z2)4+q8y2(2x2+p4z2)4+p8z2(x2q4y2)4

 

=

x2(4q8y4+4q4y2p4z2+p8z4)2+q8y2(4x4+4x2p4z2+p8z4)2+p8z2(x42x2q4y2+q8y4)2

 

=

x2[16q16y8+16q12y6p4z2+4q8y4p8z4+16q12y6p4z2+16q8y4p8z4+4q4y2p12z6+4q8y4p8z4+4q4y2p12z6+p16z8]

 

 

+q8y2[16x8+16x6p4z2+4x4p8z4+16x6p4z2+16x4p8z4+4x2p12z6+4x4p8z4+4x2p12z6+p16z8]

 

 

+p8z2[x82x6q4y2+x4q8y42x6q4y2+4x4q8y42x2q12y6+x4q8y42x2q12y6+q16y8]

 

=

x2[16q16y8+32q12y6p4z2+24q8y4p8z4+8q4y2p12z6+p16z8]

 

 

+q8y2[16x8+32x6p4z2+24x4p8z4+8x2p12z6+p16z8]

 

 

+p8z2[x84x6q4y2+6x4q8y44x2q12y6+q16y8]

Let's check this out.

RHS(𝒟3D)213D4

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)3

 

=

(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[(6x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(q4y2+x2)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |