Appendix/Ramblings/T6CoordinatesPt2: Difference between revisions

From jetwiki
Jump to navigation Jump to search
No edit summary
Line 373: Line 373:
</tr>
</tr>
</table>
</table>
====Again Consider Full 3D Ellipsoid====
Let's try to replace everywhere, <math>~[\varpi/(pz)]^2 = p^{-2}\tan^2\theta</math> with <math>~\lambda_2</math>.  This gives,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\mathcal{D}^2}{p^2}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl[
(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi
\biggr] \, .
</math>
  </td>
</tr>
</table>
which means that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>\frac{p^2 z^2}{\lambda_1^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ (1+\tan^2\varphi)}{[(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi]}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ (1+\tan^2\varphi)/\tan^2\varphi}{[q^2 \lambda_2 (1 + q^2\tan^2\varphi)/(q^2\tan^2\varphi) - (q^2-1)]}
= \frac{1/\sin^2\varphi}{[q^2\lambda_2 Q^2 - (q^2-1) ]}
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{q^2y^2}{\lambda_1^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) } 
-
\frac{ q^2 \tan^2\varphi (1+\tan^2\varphi)}{(1+q^2\tan^2\varphi) [(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi] }
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) } \biggl\{1 
-
\frac{ (1+\tan^2\varphi)}{ [(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi] }
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) } \biggl\{1 
-
\frac{ (1+\tan^2\varphi)/\tan^2\varphi}{ [q^2\lambda_2(1 + q^2\tan^2\varphi)/(q^2\tan^2\varphi) - (q^2-1) ] }
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{ 1}{Q^2 } \biggl\{1 
-
\frac{ 1/\sin^2\varphi}{ [q^2\lambda_2 Q^2 - (q^2-1) ] }
\biggr\}
= \frac{1}{Q^2[~~]} \biggl[ [~~] - \frac{1}{\sin^2\varphi} \biggr]
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{x^2}{\lambda_1^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1
- \frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) } \biggl\{1 
-
\frac{ (1+\tan^2\varphi)}{ [(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi] }
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{ (1+\tan^2\varphi)}{[(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi]}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1
- \frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) }
- \biggl\{\frac{ (1+\tan^2\varphi)}{ [(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi] }
\biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1
- \frac{ 1 }{ Q^2 }
- \biggl\{\frac{ 1/\sin^2\varphi}{ [q^2\lambda_2 Q^2 - (q^2-1) ] }
\biggr\}
=
\frac{1}{Q^2 [~~] } \biggl\{
Q^2[~~] - [~~] - \frac{Q^2}{\sin^2\varphi}
\biggr\}
\, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{x^2 + q^2y^2}{\lambda_1^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1
- \biggl[1 + \frac{ q^2 \tan^2\varphi }{(1+q^2\tan^2\varphi) }\biggr] \biggl\{
\frac{ (1+\tan^2\varphi)}{ [(1 + q^2\tan^2\varphi)\lambda_2 - (q^2-1)\tan^2\varphi] }
\biggr\} \, .
</math>
  </td>
</tr>
</table>
Now, notice that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{q^2 y^2 Q^2}{\lambda_1^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1 - \frac{1}{[~~]\sin^2\varphi} \, ,</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{x^2}{\lambda_1^2} + \frac{1}{Q^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1 - \frac{1}{[~~]\sin^2\varphi} \, .</math>
  </td>
</tr>
</table>
Hence,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{x^2}{\lambda_1^2} + \frac{1}{Q^2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{q^2 y^2 Q^2}{\lambda_1^2}</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~ 0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~Q^4 \biggl( \frac{q^2 y^2}{\lambda_1^2} \biggr) - Q^2 \biggl( \frac{x^2}{\lambda_1^2} \biggr) - 1</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~Q^4  - Q^2 \biggl( \frac{x^2}{q^2 y^2} \biggr) - \biggl( \frac{\lambda_1^2}{q^2 y^2} \biggr) \, ,</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{1 + q^2\tan^2\varphi}{q^2\tan^2\varphi} \, .</math>
  </td>
</tr>
</table>
Solving the quadratic equation, we have,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~Q^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2} \biggl\{ \biggl( \frac{x^2}{q^2 y^2} \biggr) \pm \biggl[ \biggl( \frac{x^2}{q^2 y^2} \biggr)^2 + 4\biggl( \frac{\lambda_1^2}{q^2 y^2} \biggr) \biggr]^{1 / 2}  \biggr\}</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{x^2}{2q^2 y^2} \biggr) \biggl\{ 1  \pm \biggl[ 1 + 4\biggl( \frac{\lambda_1^2 q^2 y^2}{x^4} \biggr) \biggr]^{1 / 2}  \biggr\} \, .</math>
  </td>
</tr>
</table>
<table border="1" align="center" width="80%" cellpadding="10"><tr><td align="left">
<div align="center">'''Tentative Summary'''</div>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_1</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(x^2 + q^2y^2 + p^2 z^2)^{1 / 2} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\lambda_2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\frac{(x^2 + y^2)^{1 / 2}}{pz}
\, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\lambda_3 = Q^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{x^2}{2q^2 y^2} \biggr) \biggl\{ 1  \pm \biggl[ 1 + 4\biggl( \frac{\lambda_1^2 q^2 y^2}{x^4} \biggr) \biggr]^{1 / 2}  \biggr\} \, .</math>
  </td>
</tr>
</table>
</td></tr></table>


{{ SGFfooter }}
{{ SGFfooter }}

Revision as of 15:36, 23 July 2021

Concentric Ellipsoidal (T6) Coordinates (Part 2)

Orthogonal Coordinates

Speculation5

Spherical Coordinates

rcosθ

=

z,

rsinθ

=

(x2+y2)1/2,

tanφ

=

yx.

Use λ1 Instead of r

Here, as above, we define,

λ12

x2+q2y2+p2z2

Using this expression to eliminate "x" (in favor of λ1) in each of the three spherical-coordinate definitions, we obtain,

r2x2+y2+z2

=

λ12y2(q21)z2(p21);

tan2θx2+y2z2

=

1z2[λ12y2(q21)p2z2];

1tan2φx2y2

=

λ12p2z2y2q2.

After a bit of additional algebraic manipulation, we find that,

z2λ12

=

(1+tan2φ)𝒟2,

y2λ12

=

[𝒟2tan2φp2tan2φ(1+tan2φ)(1+q2tan2φ)𝒟2],

x2λ12

=

1q2(y2λ12)p2(z2λ12),

where,

𝒟2

[(1+q2tan2φ)(p2+tan2θ)p2(q21)tan2φ].

As a check, let's set q2=p2=1, which should reduce to the normal spherical coordinate system.

λ12

r2,

      and,      

𝒟2

[(1+tan2φ)(1+tan2θ)].

z2λ12

11+tan2θ=cos2θ=z2r2;

y2λ12

[(1+tan2φ)(1+tan2θ)tan2φtan2φ(1+tan2φ)(1+tan2φ)(1+tan2φ)(1+tan2θ)]

 

=

tan2φ(1+tan2φ)[tan2θ(1+tan2θ)]=sin2θsin2φ=y2r2;

x2λ12

1(y2λ12)(z2λ12),

 

1sin2θsin2φcos2θ=sin2θsin2φ+sin2θ=sin2θcos2φ=x2r2.

Relationship To T3 Coordinates

If we set, q=1, but continue to assume that p>1, we expect to see a representation that resembles our previously discussed, T3 Coordinates. Note, for example, that the new "radial" coordinate is,

λ12

(ϖ2+p2z2),

      and,      

𝒟2

[(1+tan2φ)(p2+tan2θ)].

p2z2λ12

p2(p2+tan2θ)=1(1+p2tan2θ),

ϖ2λ12=x2λ12+y2λ12

1p2(z2λ12)=[11(1+p2tan2θ)].

We also see that,

ϖ2p2z2

(1+p2tan2θ)[11(1+p2tan2θ)]=p2tan2θ.

Again Consider Full 3D Ellipsoid

Let's try to replace everywhere, [ϖ/(pz)]2=p2tan2θ with λ2. This gives,

𝒟2p2

[(1+q2tan2φ)λ2(q21)tan2φ].

which means that,

p2z2λ12

=

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]=1/sin2φ[q2λ2Q2(q21)],

q2y2λ12

=

q2tan2φ(1+q2tan2φ)q2tan2φ(1+tan2φ)(1+q2tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]}

 

=

1Q2{11/sin2φ[q2λ2Q2(q21)]}=1Q2[][[]1sin2φ],

x2λ12

=

1q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

 

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

1q2tan2φ(1+q2tan2φ){(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

11Q2{1/sin2φ[q2λ2Q2(q21)]}=1Q2[]{Q2[][]Q2sin2φ},

x2+q2y2λ12

=

1[1+q2tan2φ(1+q2tan2φ)]{(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}.

Now, notice that,

q2y2Q2λ12

=

11[]sin2φ,

and,

x2λ12+1Q2

=

11[]sin2φ.

Hence,

x2λ12+1Q2

=

q2y2Q2λ12

0

=

Q4(q2y2λ12)Q2(x2λ12)1

 

=

Q4Q2(x2q2y2)(λ12q2y2),

where,

Q2

1+q2tan2φq2tan2φ.

Solving the quadratic equation, we have,

Q2

=

12{(x2q2y2)±[(x2q2y2)2+4(λ12q2y2)]1/2}

 

=

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Tentative Summary

λ1

(x2+q2y2+p2z2)1/2,

λ2

(x2+y2)1/2pz,

λ3=Q2

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |