Appendix/Ramblings/T6CoordinatesPt2

From jetwiki
Revision as of 15:12, 23 July 2021 by Jet53man (talk | contribs) (Created page with "__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Concentric Ellipsoidal (T6) Coordinates= ==Background== Building on our Appendix/Ramblings/DirectionCosines|general intr...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Concentric Ellipsoidal (T6) Coordinates

Background

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of T3 (concentric oblate-spheroidal) and T5 (concentric elliptic) coordinate systems, here we explore the creation of a concentric ellipsoidal (T6) coordinate system. This is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.

Orthogonal Coordinates

Primary (radial-like) Coordinate

We start by defining a "radial" coordinate whose values identify various concentric ellipsoidal shells,

λ1

(x2+q2y2+p2z2)1/2.

When λ1=a, we obtain the standard definition of an ellipsoidal surface, it being understood that, q2=a2/b2 and p2=a2/c2. (We will assume that a>b>c, that is, p2>q2>1.)

A vector, n^, that is normal to the λ1 = constant surface is given by the gradient of the function,

F(x,y,z)

(x2+q2y2+p2z2)1/2λ1.

In Cartesian coordinates, this means,

n^(x,y,z)

=

ı^(Fx)+ȷ^(Fy)+k^(Fz)

 

=

ı^[x(x2+q2y2+p2z2)1/2]+ȷ^[q2y(x2+q2y2+p2z2)1/2]+k^[p2z(x2+q2y2+p2z2)1/2]

 

=

ı^(xλ1)+ȷ^(q2yλ1)+k^(p2zλ1),

where it is understood that this expression is only to be evaluated at points, (x,y,z), that lie on the selected λ1 surface — that is, at points for which the function, F(x,y,z)=0. The length of this normal vector is given by the expression,

[n^n^]1/2

=

[(Fx)2+(Fy)2+(Fz)2]1/2

 

=

[(xλ1)2+(q2yλ1)2+(p2zλ1)2]1/2

 

=

1λ13D

where,

3D

[x2+q4y2+p4z2]1/2.

It is therefore clear that the properly normalized normal unit vector that should be associated with any λ1 = constant ellipsoidal surface is,

e^1

n^[n^n^]1/2=ı^(x3D)+ȷ^(q2y3D)+k^(p2z3D).

From our accompanying discussion of direction cosines, it is clear, as well, that the scale factor associated with the λ1 coordinate is,

h12

=

λ123D2.

We can also fill in the top line of our direction-cosines table, namely,

Direction Cosines for T6 Coordinates
γni=hn(λnxi)

n i=x,y,z
1  

x3D
 

q2y3D p2z3D
2

 
---
 

 
---
 

 
---
 

3

 
---
 

 
---
 

 
---
 

Other Coordinate Pair in the Tangent Plane

Let's focus on a particular point on the λ1 = constant surface, (x0,y0,z0), that necessarily satisfies the function, F(x0,y0,z0)=0. We have already derived the expression for the unit vector that is normal to the ellipsoidal surface at this point, namely,

e^1

ı^(x03D)+ȷ^(q2y03D)+ȷ^(p2z03D),

where, for this specific point on the surface,

3D

=

[x02+q4y02+p4z02]1/2.


Tangent Plane
[See, for example, Dan Sloughter's (Furman University) 2001 Calculus III class lecture notes — specifically Lecture 15]


The two-dimensional plane that is tangent to the λ1 = constant surface at this point is given by the expression,

0

=

(xx0)[λ1x]0+(yy0)[λ1y]0+(zz0)[λ1z]0

 

=

(xx0)[Fx]0+(yy0)[Fy]0+(zz0)[Fz]0

 

=

(xx0)(xλ1)0+(yy0)(q2yλ1)0+(zz0)(p2zλ1)0

x(xλ1)0+y(q2yλ1)0+z(p2zλ1)0

=

x0(xλ1)0+y0(q2yλ1)0+z0(p2zλ1)0

xx0+q2yy0+p2zz0

=

x02+q2y02+p2z02

xx0+q2yy0+p2zz0

=

(λ12)0.

Fix the value of λ1. This means that the relevant ellipsoidal surface is defined by the expression,

λ12

=

x2+q2y2+p2z2.

If z=0, the semi-major axis of the relevant x-y ellipse is λ1, and the square of the semi-minor axis is λ12/q2. At any other value, z=z0<c, the square of the semi-major axis of the relevant x-y ellipse is, (λ12p2z02) and the square of the corresponding semi-minor axis is, (λ12p2z02)/q2. Now, for any chosen x02(λ12p2z02), the y-coordinate of the point on the λ1 surface is given by the expression,

y02

=

1q2[λ12p2z0x02].

The slope of the line that lies in the z=z0 plane and that is tangent to the ellipsoidal surface at (x0,y0) is,

mdydx|z0

=

x0q2y0

Speculation1

Building on our experience developing T3 Coordinates and, more recently, T5 Coordinates, let's define the two "angles,"

Z

sinh1(qyx)

      and,      

Υ

sinh1(pzx),

in which case we can write,

λ12

=

x2(cosh2Z+sinh2Υ).

We speculate that the other two orthogonal coordinates may be defined by the expressions,

λ2

x[sinhZ]1/(1q2)=x[qyx]1/(1q2)=x[xqy]1/(q21)=[xq2qy]1/(q21),

λ3

x[sinhΥ]1/(1p2)=x[pzx]1/(1p2)=x[xpz]1/(p21)=[xp2pz]1/(p21).

Some relevant partial derivatives are,

λ2x

=

[1qy]1/(q21)[q2q21]x1/(q21)=[q2q21][xqy]1/(q21)=[q2q21]λ2x;

λ2y

=

[xq2q]1/(q21)[11q2]yq2/(1q2)=[1q21]λ2y;

λ3x

=

[p2p21]λ3x;

λ3z

=

[1p21]λ3z.

And the associated scale factors are,

h22

=

{[(q2q21)λ2x]2+[(1q21)λ2y]2}1

 

=

{(q2q21)2λ22x2+(1q21)2λ22y2}1

 

=

{x2+q4y2}1[(q21)2x2y2λ22];

h32

=

{x2+p4z2}1[(p21)2x2z2λ32].

We can now fill in the rest of our direction-cosines table, namely,

Direction Cosines for T6 Coordinates
γni=hn(λnxi)

n i=x,y,z
1  

x3D
 

q2y3D p2z3D
2

q2yq

xq

0

3

p2zp

0

xp

Hence,

e^2

=

ı^γ21+ȷ^γ22+k^γ23=ı^(q2yq)ȷ^(xq);

e^3

=

ı^γ31+ȷ^γ32+k^γ33=ı^(p2zp)k^(xp).

Check:

e^2e^2

=

(q2yq)2+(xq)2=1;

e^3e^3

=

(p2zp)2+(xp)2=1;

e^2e^3

=

(q2yq)(p2zp)0.

Speculation2

Try,

λ2

=

xy1/q2z1/p2,

in which case,

λ2x

=

λ2x,

λ2y

=

xz1/p2(1q2)y1/q21=λ2q2y,

λ2z

=

λ2p2z.

The associated scale factor is, then,

h22

=

[(λ2x)2+(λ2y)2+(λ2z)2]1

 

=

[(λ2x)2+(λ2q2y)2+(λ2p2z)2]1

Speculation3

Try,

λ2

=

(x+p2z)1/2y1/q2,

in which case,

λ2x

=

12y1/q2(x+p2z)1/2=λ22(x+p2z),

λ2y

=

λ2q2y,

λ2z

=

.

Speculation4

Development

Here we stick with the primary (radial-like) coordinate as defined above; for example,

λ1

(x2+q2y2+p2z2)1/2,

h1

=

λ13D,

3D

[x2+q4y2+p4z2]1/2,

e^1

=

ı^(x3D)+ȷ^(q2y3D)+k^(p2z3D).

Note that, e^1e^1=1, which means that this is, indeed, a properly normalized unit vector.

Then, drawing from our earliest discussions of "T1 Coordinates", we'll try defining the second coordinate as,

λ3

tan1u,       where,

u

y1/q2x.

The relevant partial derivatives are,

λ3x

=

11+u2[y1/q2x2]=[u1+u2]1x=sinλ3cosλ3x,

λ3y

=

11+u2[y(1/q21)q2x]=[u1+u2]1q2y=sinλ3cosλ3q2y,

which means that,

h32

=

[(λ3x)2+(λ3y)2]1

 

=

[u1+u2]2[1x2+1q4y2]1

 

=

[1+u2u]2[x2+q4y2x2q4y2]1

h3

=

[1+u2u]xq2yq=xq2yqsinλ3cosλ3,       where,

q

[x2+q4y2]1/2.

The third row of direction cosines can now be filled in to give,

Direction Cosines for T6 Coordinates
γni=hn(λnxi)

n i=x,y,z
1  

x3D
 

q2y3D p2z3D
2

 
---
 

 
---
 

 
---
 

3

q2yq

xq

0

which means that the associated unit vector is,

e^3

=

ı^(q2yq)+ȷ^(xq).

Note that, e^3e^3=1, which means that this also is a properly normalized unit vector. Note, as well, that the dot product between our "first" and "third" unit vectors should be zero if they are indeed orthogonal to each other. Let's see …

e^3e^1

=

(q2yq)x3D+(xq)q2y3D=0.

Q.E.D.

Now, even though we have not yet determined the proper expression for the "second" orthogonal coordinate, λ2, we should be able to obtain an expression for its associated unit vector from the cross product of the "third" and "first" unit vectors. Specifically we find,

e^2e^3×e^1

=

ı^[(e3)2(e1)3(e3)3(e1)2]+ȷ^[(e3)3(e1)1(e3)1(e1)3]+k^[(e3)1(e1)2(e3)2(e1)1]

 

=

ı^[(xq)(p2z3D)0]+ȷ^[0(q2yq)(p2z3D)]+k^[(q2yq)(q2y3D)(xq)(x3D)]

 

=

q3D[ı^(xp2z)+ȷ^(q2yp2z)k^(x2+q4y2)]

 

=

q3D[ı^(xp2z)+ȷ^(q2yp2z)k^(1q2)].

Note that,

e^3e^2

=

q23D[(q2y)xp2z+(x)q2yp2z]=0;

and,

e^1e^2

=

(x3D)xp2zq3D+(q2y3D)q2yp2zq3D(x2+q4y2)q3D(p2z3D)

 

=

q3D2[x2p2z+(q4y2)p2z(x2+q4y2)(p2z)]=0.

We conclude, therefore, that e^2 is perpendicular to both of the other unit vectors. Hooray!


Filling in the second row of the direction cosines table gives,

Direction Cosines for T6 Coordinates
γni=hn(λnxi)

n i=x,y,z
1  

x3D
 

q2y3D p2z3D
2

xp2zq3D

q2yp2zq3D

(x2+q4y2)q3D=3D/q

3

q2yq

xq

0

Analysis

Let's break down each direction cosine into its components.

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 --- --- --- --- --- q3D(xp2z) q3D(q2yp2z) (x2+q4y2)q3D
3 tan1(y1/q2x) xq2yqsinλ3cosλ3 sinλ3cosλ3x +sinλ3cosλ3q2y 0 q2yq xq 0

Try,

λ2

tan1w,       where,

w

(x2+q2y2)1/2z1/p21z1/p2=w(x2+q2y2)1/2.

The relevant partial derivatives are,

λ2x

=

11+w2[x(x2+q2y2)1/2z1/p2]=w1+w2[x(x2+q2y2)],

λ2y

=

11+w2[q2y(x2+q2y2)1/2z1/p2]=w1+w2[q2y(x2+q2y2)],

λ2z

=

w1+w2[1p2z],

which means that,

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

[(w1+w2)2x2(x2+q2y2)2]+[(w1+w2)2q4y2(x2+q2y2)2]+[(w1+w2)21p4z2]

 

=

(w1+w2)2[(x2+q4y2)(p4z2)+(x2+q2y2)2(x2+q2y2)2p4z2]

h2

=

(1+w2w){(x2+q2y2)p2z𝒟},

where,

𝒟

[(x2+q4y2)(p4z2)+(x2+q2y2)2]1/2.

Hence, the trio of associated direction cosines are,

γ21=h2(λ2x)

=

(1+w2w){(x2+q2y2)p2z𝒟}w1+w2[x(x2+q2y2)]={xp2z𝒟},

γ22=h2(λ2y)

=

(1+w2w){(x2+q2y2)p2z𝒟}w1+w2[q2y(x2+q2y2)]={q2yp2z𝒟},

γ23=h2(λ2z)

=

(1+w2w){(x2+q2y2)p2z𝒟}w1+w2[1p2z]={(x2+q2y2)𝒟}.

VERY close!

Let's examine the function, 𝒟2.

13D2d2

=

(x2+q4y2)(x2+q4y+p4z)=(x2+q4y2)p4z+(x2+q4y2)2.

Eureka (NOT!)

Try,

λ2

tan1w,       where,

w

(x2+q2y2)1/2p2z1p2z=w(x2+q2y2)1/2.

The relevant partial derivatives are,

λ2x

=

11+w2[x(x2+q2y2)1/2p2z]=w1+w2[x(x2+q2y2)],

λ2y

=

11+w2[q2y(x2+q2y2)1/2p2z]=w1+w2[q2y(x2+q2y2)],

λ2z

=

11+w2[(x2+q2y2)1/2p2z2]=w1+w2[1z],

which means that,

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

[w1+w2]2{[x(x2+q2y2)]2+[q2y(x2+q2y2)]2+[1z]2}

 

=

[w1+w2]2{x2+q4y2(x2+q2y2)2+1z2}

Speculation5

Spherical Coordinates

rcosθ

=

z,

rsinθ

=

(x2+y2)1/2,

tanφ

=

yx.

Use λ1 Instead of r

Here, as above, we define,

λ12

x2+q2y2+p2z2

Using this expression to eliminate "x" (in favor of λ1) in each of the three spherical-coordinate definitions, we obtain,

r2x2+y2+z2

=

λ12y2(q21)z2(p21);

tan2θx2+y2z2

=

1z2[λ12y2(q21)p2z2];

1tan2φx2y2

=

λ12p2z2y2q2.

After a bit of additional algebraic manipulation, we find that,

z2λ12

=

(1+tan2φ)𝒟2,

y2λ12

=

[𝒟2tan2φp2tan2φ(1+tan2φ)(1+q2tan2φ)𝒟2],

x2λ12

=

1q2(y2λ12)p2(z2λ12),

where,

𝒟2

[(1+q2tan2φ)(p2+tan2θ)p2(q21)tan2φ].

As a check, let's set q2=p2=1, which should reduce to the normal spherical coordinate system.

λ12

r2,

      and,      

𝒟2

[(1+tan2φ)(1+tan2θ)].

z2λ12

11+tan2θ=cos2θ=z2r2;

y2λ12

[(1+tan2φ)(1+tan2θ)tan2φtan2φ(1+tan2φ)(1+tan2φ)(1+tan2φ)(1+tan2θ)]

 

=

tan2φ(1+tan2φ)[tan2θ(1+tan2θ)]=sin2θsin2φ=y2r2;

x2λ12

1(y2λ12)(z2λ12),

 

1sin2θsin2φcos2θ=sin2θsin2φ+sin2θ=sin2θcos2φ=x2r2.

Relationship To T3 Coordinates

If we set, q=1, but continue to assume that p>1, we expect to see a representation that resembles our previously discussed, T3 Coordinates. Note, for example, that the new "radial" coordinate is,

λ12

(ϖ2+p2z2),

      and,      

𝒟2

[(1+tan2φ)(p2+tan2θ)].

p2z2λ12

p2(p2+tan2θ)=1(1+p2tan2θ),

ϖ2λ12=x2λ12+y2λ12

1p2(z2λ12)=[11(1+p2tan2θ)].

We also see that,

ϖ2p2z2

(1+p2tan2θ)[11(1+p2tan2θ)]=p2tan2θ.


Again Consider Full 3D Ellipsoid

Let's try to replace everywhere, [ϖ/(pz)]2=p2tan2θ with λ2. This gives,

𝒟2p2

[(1+q2tan2φ)λ2(q21)tan2φ].

which means that,

p2z2λ12

=

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]=1/sin2φ[q2λ2Q2(q21)],

q2y2λ12

=

q2tan2φ(1+q2tan2φ)q2tan2φ(1+tan2φ)(1+q2tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]}

 

=

1Q2{11/sin2φ[q2λ2Q2(q21)]}=1Q2[][[]1sin2φ],

x2λ12

=

1q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

 

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

1q2tan2φ(1+q2tan2φ){(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

11Q2{1/sin2φ[q2λ2Q2(q21)]}=1Q2[]{Q2[][]Q2sin2φ},

x2+q2y2λ12

=

1[1+q2tan2φ(1+q2tan2φ)]{(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}.

Now, notice that,

q2y2Q2λ12

=

11[]sin2φ,

and,

x2λ12+1Q2

=

11[]sin2φ.

Hence,

x2λ12+1Q2

=

q2y2Q2λ12

0

=

Q4(q2y2λ12)Q2(x2λ12)1

 

=

Q4Q2(x2q2y2)(λ12q2y2),

where,

Q2

1+q2tan2φq2tan2φ.

Solving the quadratic equation, we have,

Q2

=

12{(x2q2y2)±[(x2q2y2)2+4(λ12q2y2)]1/2}

 

=

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Tentative Summary

λ1

(x2+q2y2+p2z2)1/2,

λ2

(x2+y2)1/2pz,

λ3=Q2

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Partial Derivatives & Scale Factors

First Coordinate

λ1x

=

xλ1,

λ1y

=

q2yλ1,

λ1z

=

p2zλ1.

h12

=

(λ1x)2+(λ1y)2+(λ1z)2

=

(xλ1)2+(q2yλ1)2+(p2zλ1)2.

h1

=

λ13D,

where,

3D(x2+q4y2+p4z2)1/2.

As a result, the associated unit vector is,

e^1

=

ı^h1(λ1x)+ȷ^h1(λ1y)+k^h1(λ1z)

 

=

ı^x3D+ȷ^q2y3D+k^p2z3D.

Notice that,

e^1e^1

=

(x2+q4y2+p4z2)3D2=1.


Second Coordinate (1st Try)

λ2x

=

1pz[x(x2+y2)1/2],

λ2y

=

1pz[y(x2+y2)1/2],

λ2z

=

(x2+y2)1/2pz2.

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

{1pz[x(x2+y2)1/2]}2+{1pz[y(x2+y2)1/2]}2+{(x2+y2)1/2pz2}2

 

=

{[x2(x2+y2)p2z2]}+{[y2(x2+y2)p2z2]}+{(x2+y2)p2z4}

 

=

1p2z2+(x2+y2)p2z4=(x2+y2+z2)p2z4

h2

=

pz2r

As a result, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^[xzr(x2+y2)1/2]+ȷ^[yzr(x2+y2)1/2]k^[(x2+y2)1/2r].

Notice that,

e^2e^2

=

[x2z2r2(x2+y2)]+[y2z2r2(x2+y2)]+[(x2+y2)r2]=1.

Let's check to see if this "second" unit vector is orthogonal to the "first."

e^1e^2

=

x3D[xzr(x2+y2)1/2]+q2y3D[yzr(x2+y2)1/2]p2z3D[(x2+y2)1/2r]

 

=

3D{[x2zr(x2+y2)1/2]+[q2y2zr(x2+y2)1/2][p2z(x2+y2)1/2r]}

 

=

z3Dr(x2+y2)1/2{[x2]+[q2y2][p2(x2+y2)]}

 

0 .


Second Coordinate (2nd Try)

Let's try,

λ2

=

[(x2+q2y2+𝔣p2z2)1/2pz],

λ2x

=

xpz(x2+q2y2+𝔣p2z2)1/2=xp2z2λ2,

λ2y

=

q2ypz(x2+q2y2+𝔣p2z2)1/2=q2yp2z2λ2,

λ2z

=

𝔣p2zpz(x2+q2y2+𝔣p2z2)1/2(x2+q2y2+𝔣p2z2)1/2pz2=1p2z2λ2(𝔣p2z)λ2z=1p2z2λ2(𝔣p2zp2zλ22).

Hence,

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

[xp2z2λ2]2+[q2yp2z2λ2]2+[𝔣zλ2λ2z]2

 

=

[x2+q4y2p4z4λ22]+[1zλ2(𝔣λ22)]2

 

=

1p4z4λ22[x2+q4y2+p4z2(𝔣λ22)2]

h2

=

p2z2λ2[x2+q4y2+p4z2(𝔣λ22)2]1/2.

So, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+ȷ^{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+k^{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}.

Checking orthogonality …

e^1e^2

=

x3D{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+q2y3D{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+p2z3D{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

If 𝔣=0, we have …

p2z(𝔣λ22)

       

[p2zλ22]𝔣=0=p2z[(x2+q2y2+𝔣0p2z2)1/2pz]2=(x2+q2y2)z,

which, in turn, means …

[x2+q4y2+p4z2(𝔣0λ22)2]1/2

=

[x2+q4y2+p4z2λ24]1/2

 

=

{x2+q4y2+p4z2[(x2+q2y2+𝔣0p2z2)1/2pz]4}1/2

 

=

{x2+q4y2+[(x2+q2y2)2z2]}1/2

 

=

(x2+q4y2)1/2[1+(x2+q2y2)z2]1/2

 

=

(x2+q4y2)1/2z[z2+(x2+q2y2)]1/2,

and,

e^1e^2

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

Speculation6

Determine λ2

This is very similar to the above, Speculation2. Try,

λ2

=

xy1/q2z2/p2,

in which case,

λ2x

=

λ2x,

λ2y

=

xz2/p2(1q2)y1/q21=λ2q2y,

λ2z

=

2λ2p2z.

The associated scale factor is, then,

h2

=

[(λ2x)2+(λ2y)2+(λ2z)2]1/2

 

=

[(λ2x)2+(λ2q2y)2+(2λ2p2z)2]1/2

 

=

1λ2[1x2+1q4y2+4p4z2]1/2

 

=

1λ2[(q4y2p4z2+x2p4z2+4x2q4y2x2q4y2p4z2]1/2

 

=

1λ2[xq2yp2z𝒟].

where,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

The associated unit vector is, then,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

xq2yp2z𝒟{ı^(1x)+ȷ^(1q2y)+k^(2p2z)} .

Recalling that the unit vector associated with the "first" coordinate is,

e^1

ı^(x3D)+ȷ^(q2y3D)+k^(p2z3D),

where,

3D

=

(x2+q4y2+p4z2)1/2,

let's check to see whether the "second" unit vector is orthogonal to the "first."

e^1e^2

=

(xq2yp2z)3D𝒟[1+12]=0.

Hooray!

Direction Cosines for Third Unit Vector

Now, what is the unit vector, e^3, that is simultaneously orthogonal to both these "first" and the "second" unit vectors?

e^3e^1×e^2

=

ı^[(e1y)(e2z)(e2y)(e1z))]+ȷ^[(e1z)(e2x)(e2z)(e1x))]+k^[(e1x)(e2y)(e2x)(e1y))]

 

=

(xq2yp2z)3D𝒟{ı^[(2q2yp2z)(p2zq2y)]+ȷ^[(p2zx)(2xp2z)]+k^[(xq2y)(q2yx)]}

 

=

(xq2yp2z)3D𝒟{ı^[2q4y2+p4z2q2yp2z]+ȷ^[p4z2+2x2xp2z]+k^[x2q4y2xq2y]}

 

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}.

Is this a valid unit vector? First, note that …

(3D𝒟)2

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)

 

=

(x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+x2q4y2p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4+4x2q4y2p4z2)

 

=

6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(x2+q4y2).

Then we have,

(3D𝒟)2e^3e^3

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2

 

=

x2(4q8y4+4q4y2p4z2+p8z4)+q4y2(p8z4+4x2p4z2+4x4)+p4z2(x42x2q4y2+q8y4)

 

=

4x2q8y4+4x2q4y2p4z2+x2p8z4+q4y2p8z4+4x2q4y2p4z2+4x4q4y2+x4p4z22x2q4y2p4z2+q8y4p4z2

 

=

6x2q4y2p4z2+p8z4(x2+q4y2)+x4(4q4y2+p4z2)+q8y4(4x2+p4z2)

 

=

(3D𝒟)2,

which means that, e^3e^3=1.    Hooray! Again (11/11/2020)!

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors.

e^1e^3

=

3D2𝒟{x[x(2q4y2+p4z2)]+q2y[q2y(p4z2+2x2)]+p2z[p2z(x2q4y2)]}

 

=

3D2𝒟{(2x2q4y2+x2p4z2)+(q4y2p4z2+2x2q4y2)+(x2p4z2q4y2p4z2)}

 

=

0,

and,

e^2e^3

=

3D𝒟xq2yp2z𝒟{[(2q4y2+p4z2)]+[(p4z2+2x2)][2(x2q4y2)]}

 

=

0.

Q. E. D.

Search for Third Coordinate Expression

Let's try …

λ3

=

𝒟n3Dm

 

=

(q4y2p4z2+x2p4z2+4x2q4y2)n/2(x2+q4y2+p4z2)m/2

λ3xi

=

3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)n/21]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n[m2(x2+q4y2+p4z2)m/21]xi[(x2+q4y2+p4z2)]

 

=

𝒟n3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)1]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n3Dm[m2(x2+q4y2+p4z2)1]xi[(x2+q4y2+p4z2)].

Hence,

1𝒟n3Dmλ3x

=

n2𝒟2x[q4y2p4z2+x2p4z2+4x2q4y2]m3D22x[x2+q4y2+p4z2]

 

=

x{n𝒟2[p4z2+4q4y2]m3D2}

 

=

x{n(p4z2+4q4y2)(q4y2p4z2+x2p4z2+4x2q4y2)m(x2+q4y2+p4z2)}

This is overly cluttered! Let's try, instead …


A3D2

=

(x2+q4y2+p4z2),

      and,      

B𝒟2

=

(q4y2p4z2+x2p4z2+4x2q4y2)

Ax

=

2x,

Ay

=

2q4y,

Az

=

2p4z;

Bx

=

2x(4q4y2+p4z2),

By

=

2q4y(p4z2+4x2),

Bz

=

2p4z(q4y2+x2).


Now, let's assume that,

λ3

(AB)1/2,

λ3xi

=

12(AB)1/2AxiA1/22B3/2Bxi

 

=

λ32AB[BAxiABxi].

[2ABλ3]λ3xi

=

(q4y2p4z2+x2p4z2+4x2q4y2)Axi(x2+q4y2+p4z2)Bxi.

Looking ahead …

h32

=

{λ32AB[BAxABx]}2+{λ32AB[BAyABy]}2+{λ32AB[BAzABz]}2

[2ABλ3]2h32

=

[BAxABx]2+[BAyABy]2+[BAzABz]2

[λ32AB]h3

=

{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

Then, for example,

γ31h3(λ3x)

=

[BAxABx]{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

As a result, we have,

[2ABλ3]λ3x

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(4q4y2+p4z2)]

 

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(4x2q4y2+x2p4z2+4q8y4+q4y2p4z2+4q4y2p4z2+p8z4)]

 

=

2x[(4q8y4+4q4y2p4z2+p8z4)]

 

=

2x(2q4y2+p4z2)2

 

=

8x(q4y2+p4z22)2

[AB]lnλ3lnx

=

[2x(q4y2+p4z22)]2;

and,

[2ABλ3]λ3y

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(p4z2+4x2)]

 

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2p4z2+4x4+q4y2p4z2+4x2q4y2+p8z4+4x2p4z2)]

 

=

2q4y(4x4+p8z4+4x2p4z2)

 

=

2q4y(2x2+p4z2)2

[AB]lnλ3lny

=

[2q2y(x2+p4z22)]2;

and,

[2ABλ3]λ3z

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(q4y2+x2)]

 

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2q4y2+x4+q8y4+x2q4y2+q4y2p4z2+x2p4z2)]

 

=

2p4z[(2x2q4y2)(x4+q8y4)]

 

=

2p4z[x4+q8y42x2q4y2]

 

=

2p4z(x2q4y2)2

[AB]lnλ3lnz

=

4[(p4z24)(x2q4y2)2]

 

=

[2(p2z2)(x2q4y2)]2.

Wow!   Really close! (13 November 2020)


Just for fun, let's see what we get for h3. It is given by the expression,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

 

=

{λ3ABx[2x(q4y2+p4z22)]2}2+{λ3ABy[2q2y(x2+p4z22)]2}2+{λ3ABz[2(p2z2)(x2q4y2)]2}2

[ABλ3]2h32

=

{1x2[2x(q4y2+p4z22)]4}+{1y2[2q2y(x2+p4z22)]4}+{1z2[2(p2z2)(x2q4y2)]4}

Fiddle Around

Let …

x

[BAxABx]

=

8x(q4y2+p4z22)2

=

2x[2x(q4y2+p4z22)]2

=

8x𝔉x(y,z)

y

[BAyABy]

=

8q4y(x2+p4z22)2

=

2y[2q2y(x2+p4z22)]2

=

8y𝔉y(x,z)

z

[BAzABz]

=

2p4z(x2q4y2)2

=

2z[p2z(x2q4y2)]2

=

8z𝔉z(x,y)

With this shorthand in place, we can write,

e^3

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}

 

=

1(AB)1/2{ı^[xx2]1/2+ȷ^[yy2]1/2+k^[zz2]1/2}.

We therefore also recognize that,

h3(λ3x)

=

1(AB)1/2[xx2]1/2

=

1(AB)1/2[4x2𝔉x]1/2,

h3(λ3y)

=

1(AB)1/2[yy2]1/2

=

1(AB)1/2[4y2𝔉y]1/2,

h3(λ3z)

=

1(AB)1/2[zz2]1/2

=

1(AB)1/2[4z2𝔉z]1/2.

Now, if — and it is a BIG "if" — h3=h0(AB)1/2, then we have,

h0(λ3x)

=

[4x2𝔉x]1/2

=

2x[𝔉x]1/2,

h0(λ3y)

=

[4y2𝔉y]1/2

=

2y[𝔉y]1/2,

h0(λ3z)

=

[4z2𝔉z]1/2

=

2z[𝔉z]1/2,

h0λ3

=

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2.

But if this is the correct expression for λ3 and its three partial derivatives, then it must be true that,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

(h3h0)2

=

4x2[𝔉x]+4y2[𝔉y]+4z2[𝔉z]

 

=

4x2[(q4y2+p4z22)2]+4y2[q4(x2+p4z22)2]+4z2[p44(x2q4y2)2]

 

=

x2(2q4y2+p4z2)2+q4y2(2x2+p4z2)2+p4z2(x2q4y2)2

Well … the right-hand side of this expression is identical to the right-hand side of the above expression, where we showed that it equals (3D/𝒟)2. That is to say, we are now showing that,

(h3h0)2

=

(3D𝒟)2=[AB]

h3h0

=

(AB)1/2.

And this is precisely what, just a few lines above, we hypothesized the functional expression for h3 ought to be. EUREKA!

Summary

In summary, then …

λ3

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2

 

=

x2[(q4y2+p4z22)2]1/2+y2[q4(x2+p4z22)2]1/2+z2[p44(x2q4y2)2]1/2

 

=

x2(q4y2+p4z22)+q2y2(x2+p4z22)+p2z22(x2q4y2),

and,

h3

=

(AB)1/2

 

=

[(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)]1/2.

No! Once again this does not work. The direction cosines — and, hence, the components of the e^3 unit vector — are not correct!


Speculation7

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


On my white-board I have shown that, if

λ33D𝒟,

then everything will work out as long as,

=

(𝒟3D)213D4,

where,

x2(2q4y2+p4z2)4+q8y2(2x2+p4z2)4+p8z2(x2q4y2)4

 

=

x2(4q8y4+4q4y2p4z2+p8z4)2+q8y2(4x4+4x2p4z2+p8z4)2+p8z2(x42x2q4y2+q8y4)2

 

=

x2[16q16y8+16q12y6p4z2+4q8y4p8z4+16q12y6p4z2+16q8y4p8z4+4q4y2p12z6+4q8y4p8z4+4q4y2p12z6+p16z8]

 

 

+q8y2[16x8+16x6p4z2+4x4p8z4+16x6p4z2+16x4p8z4+4x2p12z6+4x4p8z4+4x2p12z6+p16z8]

 

 

+p8z2[x82x6q4y2+x4q8y42x6q4y2+4x4q8y42x2q12y6+x4q8y42x2q12y6+q16y8]

 

=

x2[16q16y8+32q12y6p4z2+24q8y4p8z4+8q4y2p12z6+p16z8]

 

 

+q8y2[16x8+32x6p4z2+24x4p8z4+8x2p12z6+p16z8]

 

 

+p8z2[x84x6q4y2+6x4q8y44x2q12y6+q16y8]

Let's check this out.

RHS(𝒟3D)213D4

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)3

 

=

(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[(6x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(q4y2+x2)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

Best Thus Far

Part A

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

 

A3D2

=

(x2+q4y2+p4z2),

      and,      

B𝒟2

=

(q4y2p4z2+x2p4z2+4x2q4y2)

Ax

=

2x,

Ay

=

2q4y,

Az

=

2p4z;

Bx

=

2x(4q4y2+p4z2),

By

=

2q4y(p4z2+4x2),

Bz

=

2p4z(q4y2+x2).

Try …

λ3

(BA)m/2=(D3D)m

[ABmλ3]λ3xi

12{ABxiBAxi}

[ABm]lnλ3lnxi

xi2{ABxiBAxi}.

In this case we find,

x2{}x

=

x2(2q4y2+p4z2)2,

y2{}y

=

q4y2(2x2+p4z2)2,

z2{}z

=

p4z2(x2q4y2)2.

The scale factor is, then,

h32

=

i=13(λ3xi)2

 

=

i=13{[mλ32AB][ABxiBAxi]}2

 

=

[mλ3AB]2{[x(2q4y2+p4z2)2]2+[q4y(2x2+p4z2)2]2+[p4z(x2q4y2)2]2}

h3

=

[ABmλ3]{[x(2q4y2+p4z2)2]2+[q4y(2x2+p4z2)2]2+[p4z(x2q4y2)2]2}1/2.

Part B (25 February 2021)

Now, from above, we know that,

(𝒟3D)2=AB

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2.

Example:
(q2,p2)=(2,5)     and     (x,y,z)=(0.7,0.23,0.1)λ1=1.0

[x(2q4y2+p4z2)]2 [q2y(p4z2+2x2)]2 [p2z(x2q4y2)]2 (𝒟3D)2
2.14037 1.39187 0.04623 3.57847

As an aside, note that,

AB

=

[ABm]lnλ3lnx+[ABm]lnλ3lny+[ABm]lnλ3lnz

m

=

lnλ3lnx+lnλ3lny+lnλ3lnz.

We realize that this ratio of lengths may also be written in the form,

(𝒟3D)2

=

6x2q4y2p4z2+x4(4q4y2+p4z2)+q8y4(4x2+p4z2)+p8z4(x2+q4y2).

Same Example, but Different Expression:
(q2,p2)=(2,5)     and     (x,y,z)=(0.7,0.23,0.1)λ1=1.0

6x2q4y2p4z2 x4(4q4y2+p4z2) q8y4(4x2+p4z2) p8z4(x2+q4y2) (𝒟3D)2
0.67620 0.94359 1.87054 0.08813 3.57847


Let's try …

λ5x

=

x(2q4y2+p4z2),

λ5y

=

q2y(p4z2+2x2),

λ5z

=

p2z(x2q4y2).

This means that the relevant scale factor is,

h52

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2=(𝒟3D)2

h5

=

(3D𝒟),

and the three associated direction cosines are,

γ51=h5(λ5x)

=

x(2q4y2+p4z2)(3D𝒟),

γ52=h5(λ5y)

=

q2y(p4z2+2x2)(3D𝒟),

γ53=h5(λ5z)

=

p2z(x2q4y2)(3D𝒟).

These direction cosines exactly match what is required in order to ensure that the coordinate, λ5, is everywhere orthogonal to both λ1 and λ4. GREAT! The resulting summary table is, therefore:

Direction Cosine Components for T10 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
4 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
5 --- 3D𝒟 x(2q4y2+p4z2) q2y(p4z2+2x2) p2z(x2q4y2) 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


Try …

λ5

=

x2q4y2q2+yq2p4zq4p2+xp4zp2

 

=

y2q2x2q4+yq2p4zq4p2+zp4xp2

 

=

1x2q4+p2zq4p2{[xp2]y2q2[zq4p2]+[x2q4+p2]yq2p4+[x2q4]zp4+q4p2}

 

=

1x2q4+p2zq4p2{F5}.

This gives,

λ5x

=

2q4x(y2q2x2q4)p4x(zp2xp2)

 

=

1x2q4+p2+1[2q4y2q2xp2+p4x2q4zp2].

Or, given that,

x2q4+p2+1

=

xzq4p2{F5λ5},

we can also write,

λ5x

=

zq4p2x{λ5F5}[2q4y2q2xp2+p4x2q4zp2]

Similarly,

λ5y

=

2q2y(y2q2x2q4)+q2p4y(yq2p4zq4p2)

 

=

1x2q4zq4p2[2q2y(y2q2zq4p2)+q2p4y(yq2p4x2q4)]

 

=

xp2y{λ5F5}[2q2(y2q2zq4p2)+q2p4(yq2p4x2q4)];

λ5z

=

q4p2z(yq2p4zq4p2)+p4z(zp4xp2)

 

=

1xp2zq4p2[p4z(zp4+q4p2)q4p2z(xp2yq2p4)]

 

=

x2q4z{λ5F5}[p4(zp4+q4p2)q4p2(xp2yq2p4)]

Understanding the Volume Element

Let's see if the expression for the volume element makes sense; that is, does

(h1h4h5)dλ1dλ4dλ5

=

dxdydz?

First, let's make sure that we understand how to relate the components of the Cartesian line element with the components of our T10 coordinates.

Line Element

MF53 claim that the following relation gives the various expressions for the scale factors; we will go ahead and incorporate the expectation that, since our coordinate system is orthogonal, the off-diagonal elements are zero.

ds2=dx2+dy2+dz2

=

i=1,4,5hi2dλi2.

Let's see. The first term on the RHS is,

h12dλ12

=

h12[(λ1x)dx+(λ1y)dy+(λ1z)dz]2

 

=

h12[(λ1x)2dx2+(λ1y)2dy2+(λ1z)2dz2

 

 

+2(λ1x)(λ1y)dxdy+2(λ1x)(λ1z)dxdz+2(λ1x)(λ1y)dydz];

the other two terms assume easily deduced, similar forms. When put together and after regrouping terms, we can write,

i=1,4,5hi2dλi2

=

[h12(λ1x)2+h42(λ4x)2+h52(λ5x)2]dx2

 

 

+[h12(λ1y)2+h42(λ4y)2+h52(λ5y)2]dy2

 

 

+[h12(λ1z)2+h42(λ4z)2+h52(λ5z)2]dz2.

Given that this summation should also equal the square of the Cartesian line element, (dx2+dy2+dz2), we conclude that the three terms enclosed inside each of the pair of brackets must sum to unity. Specifically, from the coefficient of dx2, we can write,

h12(λ1x)2

=

1h42(λ4x)2h52(λ5x)2.

Using this relation to replace h12 in each of the other two bracketed expressions, we find for the coefficients of dy2 and dz2, respectively,

[1h42(λ4x)2h52(λ5x)2](λ1y)2

=

[1h42(λ4y)2h52(λ5y)2](λ1x)2;

[1h42(λ4x)2h52(λ5x)2](λ1z)2

=

[1h42(λ4z)2h52(λ5z)2](λ1x)2.

We can use the first of these two expressions to solve for h42 in terms of h52, namely,

(λ1y)2h42(λ4x)2(λ1y)2h52(λ5x)2(λ1y)2

=

(λ1x)2h42(λ4y)2(λ1x)2h52(λ5y)2(λ1x)2

h42[(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

=

(λ1x)2(λ1y)2+h52(λ5x)2(λ1y)2h52(λ5y)2(λ1x)2

Analogously, the second of these two expressions gives,

h42[(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

=

(λ1x)2(λ1z)2+h52(λ5x)2(λ1z)2h52(λ5z)2(λ1x)2

Eliminating h4 between the two gives the desired overall expression for h5, namely,

0

=

[(λ1x)2(λ1z)2+h52(λ5x)2(λ1z)2h52(λ5z)2(λ1x)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

 

 

[(λ1x)2(λ1y)2+h52(λ5x)2(λ1y)2h52(λ5y)2(λ1x)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

=

h52{[(λ5x)2(λ1y)2(λ5y)2(λ1x)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

 

[(λ5x)2(λ1z)2(λ5z)2(λ1x)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]}

 

 

[(λ1x)2(λ1z)2][(λ4y)2(λ1x)2(λ4x)2(λ1y)2]

 

 

+[(λ1x)2(λ1y)2][(λ4z)2(λ1x)2(λ4x)2(λ1z)2]

 

=

h52h14h42h52{[γ512γ122γ522γ112][γ432γ112γ412γ132][γ512γ132γ532γ112][γ422γ112γ412γ122]}

 

 

+1h42h12{(λ1x)2[γ432γ112γ412γ132](λ1y)2[γ432γ112γ412γ132](λ1x)2[γ422γ112γ412γ122]+(λ1z)2[γ422γ112γ412γ122]}

 

=

h52h14h42h52{[γ512γ122γ522γ112][γ43γ11+γ41γ13][γ43γ11γ41γ13][γ512γ132γ532γ112][γ42γ11+γ41γ12][γ42γ11γ41γ12]}

 

 

+1h42h12{(λ1x)2[γ43γ11+γ41γ13][γ43γ11γ41γ13](λ1y)2[γ43γ11+γ41γ13][γ43γ11γ41γ13](λ1x)2[γ42γ11+γ41γ12][γ42γ11γ41γ12]+(λ1z)2[γ42γ11+γ41γ12][γ42γ11γ41γ12]}

 

=

1h14h42{[γ51γ12+γ52γ11]γ43[γ43γ11+γ41γ13]γ52+[γ51γ13+γ53γ11]γ42[γ42γ11+γ41γ12]γ53}

 

 

+1h14h42{γ122[γ43γ11+γ41γ13]γ52γ112[γ43γ11+γ41γ13]γ52γ112[γ42γ11+γ41γ12]γ53+γ132[γ42γ11+γ41γ12]γ53}

 

=

1h14h42{[(γ51γ12γ52γ11)γ43+γ122γ112](γ43γ11+γ41γ13)γ52+[(γ51γ13+γ53γ11)γ42γ112+γ132](γ42γ11+γ41γ12)γ53}

… Not sure this is headed anywhere useful!

Volume Element

(h1h4h5)dλ1dλ4dλ5

=

(h1h4h5)[(λ1x)dx+(λ1y)dy+(λ1z)dz][(λ4x)dx+(λ4y)dy+(λ4z)dz][(λ5x)dx+(λ5y)dy+(λ5z)dz]

 

=

[(γ11)dx+(γ12)dy+(γ13)dz][(γ41)dx+(γ42)dy+(γ43)dz][(γ51)dx+(γ52)dy+(γ53)dz]

COLLADA

Here we try to use the 3D-visualization capabilities of COLLADA to test whether or not the three coordinates associated with the T6 Coordinate system are indeed orthogonal to one another. We begin by making a copy of the Inertial17.dae text file, which we obtain from an accompanying discussion. When viewed with the Mac's Preview application, this group of COLLADA-based instructions displays a purple ellipsoid with axis ratios, (b/a, c/a) = (0.41, 0.385). This means that we are dealing with an ellipsoid for which,

qab

=

2.44

      and,      

pac

=

2.60.

λ1

(x2+q2y2+p2z2)1/2;

λ2

=

xy1/q2z2/p2;

3D

[x2+q4y2+p4z2]1/2;

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

First Trial

First Trial
(specified variable values have bgcolor="pink")
x y z λ1 3D 𝒟
0.5 0.35493 0.00000 1 0.46052 2.11310

Unit Vectors

e^1

=

ı^(x03D)+ȷ^(q2y03D)+k^(p2z03D)

 

=

ı^(0.23026)+ȷ^(0.97313);

e^2

=

x0q2y0p2z0𝒟{ı^(1x0)+ȷ^(1q2y0)+k^(2p2z0)}

 

=

k^(2x0q2y0𝒟)

 

=

k^(1) ;

e^3

=

3D𝒟{ı^[x0(2q4y02+p4z02)]+ȷ^[q2y0(p4z02+2x02)]+k^[p2z0(x02q4y02)]}

 

=

2q2x0y03D𝒟{ı^(q2y0)+ȷ^(x0)}=(1)3D{ı^(q2y0)+ȷ^(x0)}

 

=

ı^(0.97313)+ȷ^(0.23026).

Tangent Plane

From our above derivation, the plane that is tangent to the ellipsoid's surface at (x0,y0,z0) is given by the expression,

xx0+q2yy0+p2zz0

=

(λ12)0.

For this First Trial, we have (for all values of z, given that z0=0) …

(0.5)x+(2.11310)y

=

1

y

=

(10.5x)2.11310.

So let's plot a segment of the tangent plane whose four corners are given by the coordinates,

Corner x y z
A x_0 - 0.25 = +0.25 0.41408 -0.25
B x_0 + 0.25 = +0.75 0.29577 -0.25
C x_0 - 0.25 = +0.25 0.41408 +0.25
D x_0 + 0.25 = +0.75 0.29577 +0.25

Now, in order to give some thickness to this tangent-plane, let's adjust the four corner locations by a distance of ±0.1 in the e^1 direction.

Eight Corners of Tangent Plane

Corner 1: Shift surface-point location (x0,y0,z0) by (+Δe1) in the e^1 direction, by (+Δe2) in the e^2 direction, and by by (+Δe3) in the e^3 direction. This gives …

x1

=

x0+(Δe1)0.23026(Δe2)0.97313

Second Trial

Second Trial(q=2.44,p=2.60)
[specified variable values have bgcolor="pink"]
x_0 y_0 z_0 λ1 3D 𝒟
0.5 0.35493 0.00000 1 0.46052 2.11310

Generic Unit Vector Expressions

Let's adopt the notation,

e^i

=

ı^[eix]+ȷ^[eiy]+k^[eiz]

      for,       i=1,3.

Then, for the T6 Coordinate system, we have,

e1x

x03D;

     

e1y

q2y03D;

     

e1z

p2z03D;

e2x

q2y0p2z0𝒟;

     

e2y

x0p2z0𝒟;

     

e2z

2x0q2y0𝒟;

e3x

x0(2q4y02+p4z02)3D𝒟;

     

e3y

q2y0(p4z02+2x02)3D𝒟;

     

e3z

p2z0(x02q4y02)3D𝒟.


Second Trial
  x y z
e1 0.23026 0.97313 0.0
e2 0.0 0.0 -1.0
e3 - 0.97313 0.23026 0.0


What are the coordinates of the eight corners of a thin tangent-plane? Let's say that we want the plane to extend …

  • From (Δ1) to (+Δ1) in the e^1 direction … here we set Δ1=0.05;
  • From (Δ2) to (+Δ2) in the e^2 direction … here we set Δ2=0.25;
  • From (Δ3) to (+Δ3) in the e^3 direction … here we set Δ3=0.25.

Δx

=

Δ1e1x+Δ2e2x+Δ3e3x=0.23177;

Δy

=

Δ1e1y+Δ2e2y+Δ3e3y=+0.10622;

Δz

=

Δ1e1z+Δ2e2z+Δ3e3z=0.25000.

Tangent Plane Schematic
vertex x y z   x y z
0 x0|Δx| y0|Δy| z0|Δz| 0.26823 0.24871 -0.25
1 x0|Δx| y0+|Δy| z0|Δz| 0.26823 0.46115 -0.25
2 x0|Δx| y0|Δy| z0+|Δz| 0.26823 0.24871 0.25
3 x0|Δx| y0+|Δy| z0+|Δz| 0.26823 0.46115 0.25
4 x0+|Δx| y0|Δy| z0|Δz| 0.73177 0.24871 -0.25
5 x0+|Δx| y0+|Δy| z0|Δz| 0.73177 0.46115 -0.25
6 x0+|Δx| y0|Δy| z0+|Δz| 0.73177 0.24871 0.25
7 x0+|Δx| y0+|Δy| z0+|Δz| 0.73177 0.46115 0.25

In the figure on the left, vertex 0 is hidden from view behind the (yellow) solid rectangle.

Third Trial

GoodPlane01

Third Trial(q=2.44,p=2.60)
[specified variable values have bgcolor="pink"]
x_0 y_0 z_0 λ1 3D 𝒟
0.8 0.24600 0.00000 1 0.59959 2.34146

Again, for the T6 Coordinate system, we have,

e1x

x03D;

     

e1y

q2y03D;

     

e1z

p2z03D;

e2x

q2y0p2z0𝒟;

     

e2y

x0p2z0𝒟;

     

e2z

2x0q2y0𝒟;

e3x

x0(2q4y02+p4z02)3D𝒟;

     

e3y

q2y0(p4z02+2x02)3D𝒟;

     

e3z

p2z0(x02q4y02)3D𝒟.


Third Trial
  x y z ΔTP
e1 0.47967 0.87745 0.0 0.02
e2 0.0 0.0 -1.0 0.25
e3 - 0.87753 0.47952 0.0 0.25

In constructing the Tangent-Plane (TP) for a 3D COLLADA display, we first move from the point that is on the surface of the ellipsoid, x0=(x0,y0,z0)=(0.8,0.246,0.0), to

vertex
"m"
Pm Components
xm=ı^Pm ym=ȷ^Pm zm=k^Pm
0 x0Δ1e^1Δ2e^2Δ3e^3

x0Δ1e1xΔ2e2xΔ3e3x

y0Δ1e1yΔ2e2yΔ3e3y

z0Δ1e1zΔ2e2zΔ3e3z

   

0.8 - 0.02 (0.47952) - 0.25 (-0.87752) = 1.00979

0.24590 - 0.02 (0.87753) - 0.25 (0.47952) = 0.10847

- 0.25 (-1.0) = + 0.25

1 x0Δ1e^1+Δ2e^2Δ3e^3

x0Δ1e1x+Δ2e2xΔ3e3x

y0Δ1e1y+Δ2e2yΔ3e3y

z0Δ1e1z+Δ2e2zΔ3e3z

   

0.8 - 0.02 (0.47952) - 0.25 (-0.87752) = 1.00979

0.24590 - 0.02 (0.87753) - 0.25 (0.47952) = 0.10847

+ 0.25 (-1.0) = - 0.25

2 x0Δ1e^1Δ2e^2+Δ3e^3

x0Δ1e1xΔ2e2x+Δ3e3x

y0Δ1e1yΔ2e2y+Δ3e3y

z0Δ1e1zΔ2e2z+Δ3e3z

   

0.8 - 0.02 (0.47952) + 0.25 (-0.87752) = 0.56307

0.24590 - 0.02 (0.87753) + 0.25 (0.47952) = 0.34823

- 0.25 (-1.0) = + 0.25

3 x0Δ1e^1+Δ2e^2+Δ3e^3

x0Δ1e1x+Δ2e2x+Δ3e3x

y0Δ1e1y+Δ2e2y+Δ3e3y

z0Δ1e1z+Δ2e2z+Δ3e3z

   

0.8 - 0.02 (0.47952) + 0.25 (-0.87752) = 0.57103

0.24590 - 0.02 (0.87753) + 0.25 (0.47952) = 0.34823

+ 0.25 (-1.0) = - 0.25

4  

0.8 + 0.02 (0.47952) - 0.25 (-0.87752) = 1.0290

0.24590 + 0.02 (0.87753) - 0.25 (0.47952) = 0.1436

- 0.25 (-1.0) = + 0.25

5  

0.8 + 0.02 (0.47952) - 0.25 (-0.87752) = 1.0290

0.24590 + 0.02 (0.87753) - 0.25 (0.47952) = 0.1436

+ 0.25 (-1.0) = - 0.25

6  

0.8 + 0.02 (0.47952) + 0.25 (-0.87752) = 0.59021

0.24590 + 0.02 (0.87753) + 0.25 (0.47952) = 0.38333

- 0.25 (-1.0) = + 0.25

7  

0.8 + 0.02 (0.47952) + 0.25 (-0.87752) = 0.59021

0.24590 + 0.02 (0.87753) + 0.25 (0.47952) = 0.38333

+ 0.25 (-1.0) = - 0.25


Tangent Plane Schematic Vertex Locations via Excel
x0=0.8,z0=0.0,y0=0.246,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25

GoodPlane02

x0=0.075,z0=0.0,y0=0.4089,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25

GoodPlane03

x0=0.25,z0=0.20,y0=0.33501,λ1=1.0
Tangent Plane Schematic Tangent Plane Schematic
Δ1=0.02,Δ2=0.25,Δ3=0.25 Δ1=0.02,Δ2=0.10,Δ3=0.25

CAPTION:   The image on the right differs from the image on the left in only one way — Δ2 = 0.1 instead of 0.25. It illustrates more clearly that the e^3 (longest) coordinate axis is not parallel to the z-axis when z00.

GoodPlane04

x0=0.25,z0=1/3,y0=0.1777,λ1=1.0
Tangent Plane Schematic
Δ1=0.02,Δ2=0.10,Δ3=0.25

Further Exploration

Let's set: x0=0.25,y0=0.33501,z0=0.2λ1=1.00000,λ2=0.33521.


qab

=

2.43972

      and,      

pac

=

2.5974.

λ1

(x2+q2y2+p2z2)1/2;

λ2

=

xy1/q2z2/p2;

3D

[x2+q4y2+p4z2]1/2;

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

Next, let's examine the curve that results from varying z while λ1 and λ2 are held fixed. From the expression for λ2 we appreciate that,

x

=

λ2z2/p2y1/q2;

and from the expression for λ1 we have,

x2

=

λ12q2y2p2z2.

Hence, the relationship between y and z is,

[λ2z2/p2y1/q2]2

=

λ12q2y2p2z2

λ22z4/p2

=

y2/q2[λ12q2y2p2z2].


Alternatively,

y

=

[λ2z2/p2x]q2.

Hence, the relationship between x and z is,

x2

=

λ12p2z2q2[λ2z2/p2x]2q2

x2(q2+1)

=

x2q2[λ12p2z2]q2[λ2z2/p2]2q2

x2

=

{x2q2[λ12p2z2]q2[λ2z2/p2]2q2}1/(q2+1)

Here are some example values …

λ1=1    and,     λ2=0.33521
z 1st Solution   2nd Solution lambda_3 coordinate
y1 x1 y2 x2
0.01 0.407825695 0.0995168 - -
0.03 0.40481851 0.138 - -
0.04 0.40309223 0.1503934 - -
0.08 0.393779065 0.1854283 - -
0.12 0.37990705 0.2103761 - -
0.16 0.36067787 0.23111 1.04123×10-4 0.9095546
0.2 0.33500747 0.2500033 2.23778×10-4 0.85448
0.22 0.31923525 0.2592611 3.36653 ×10-4 0.82065
0.24 0.30106924 0.2686685 5.2327 ×10-4 0.78192
0.26 0.2799962 0.2784963 8.53243 ×10-4 0.73752
0.28 0.25521147 0.2891526 1.491545 ×10-3 0.68634
0.3 0.22530908 0.3013752 2.89262 ×10-3 0.62671
0.32 0.1873233 0.3168808 6.6223 ×10-3 0.55579
0.34 0.13149897 0.3423994 2.09221 ×10-2 0.46637
0.343 0.1191543 0.3490285 0.026458 0.4496
0.344 0.1145 0.3517 0.02880 0.4435
0.345 0.1093972 0.354688 0.03155965 0.4371186
0.3485 0.0847372 0.3713588 0.0480478 0.4085204

See Also


Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |