Appendix/Ramblings/T6CoordinatesPt2

From jetwiki
Revision as of 17:13, 23 July 2021 by Jet53man (talk | contribs) (Speculation7)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Concentric Ellipsoidal (T6) Coordinates (Part 2)

Orthogonal Coordinates

Speculation5

Spherical Coordinates

rcosθ

=

z,

rsinθ

=

(x2+y2)1/2,

tanφ

=

yx.

Use λ1 Instead of r

Here, as above, we define,

λ12

x2+q2y2+p2z2

Using this expression to eliminate "x" (in favor of λ1) in each of the three spherical-coordinate definitions, we obtain,

r2x2+y2+z2

=

λ12y2(q21)z2(p21);

tan2θx2+y2z2

=

1z2[λ12y2(q21)p2z2];

1tan2φx2y2

=

λ12p2z2y2q2.

After a bit of additional algebraic manipulation, we find that,

z2λ12

=

(1+tan2φ)𝒟2,

y2λ12

=

[𝒟2tan2φp2tan2φ(1+tan2φ)(1+q2tan2φ)𝒟2],

x2λ12

=

1q2(y2λ12)p2(z2λ12),

where,

𝒟2

[(1+q2tan2φ)(p2+tan2θ)p2(q21)tan2φ].

As a check, let's set q2=p2=1, which should reduce to the normal spherical coordinate system.

λ12

r2,

      and,      

𝒟2

[(1+tan2φ)(1+tan2θ)].

z2λ12

11+tan2θ=cos2θ=z2r2;

y2λ12

[(1+tan2φ)(1+tan2θ)tan2φtan2φ(1+tan2φ)(1+tan2φ)(1+tan2φ)(1+tan2θ)]

 

=

tan2φ(1+tan2φ)[tan2θ(1+tan2θ)]=sin2θsin2φ=y2r2;

x2λ12

1(y2λ12)(z2λ12),

 

1sin2θsin2φcos2θ=sin2θsin2φ+sin2θ=sin2θcos2φ=x2r2.

Relationship To T3 Coordinates

If we set, q=1, but continue to assume that p>1, we expect to see a representation that resembles our previously discussed, T3 Coordinates. Note, for example, that the new "radial" coordinate is,

λ12

(ϖ2+p2z2),

      and,      

𝒟2

[(1+tan2φ)(p2+tan2θ)].

p2z2λ12

p2(p2+tan2θ)=1(1+p2tan2θ),

ϖ2λ12=x2λ12+y2λ12

1p2(z2λ12)=[11(1+p2tan2θ)].

We also see that,

ϖ2p2z2

(1+p2tan2θ)[11(1+p2tan2θ)]=p2tan2θ.

Again Consider Full 3D Ellipsoid

Let's try to replace everywhere, [ϖ/(pz)]2=p2tan2θ with λ2. This gives,

𝒟2p2

[(1+q2tan2φ)λ2(q21)tan2φ].

which means that,

p2z2λ12

=

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]=1/sin2φ[q2λ2Q2(q21)],

q2y2λ12

=

q2tan2φ(1+q2tan2φ)q2tan2φ(1+tan2φ)(1+q2tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

q2tan2φ(1+q2tan2φ){1(1+tan2φ)/tan2φ[q2λ2(1+q2tan2φ)/(q2tan2φ)(q21)]}

 

=

1Q2{11/sin2φ[q2λ2Q2(q21)]}=1Q2[][[]1sin2φ],

x2λ12

=

1q2tan2φ(1+q2tan2φ){1(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

 

(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]

 

=

1q2tan2φ(1+q2tan2φ){(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}

 

=

11Q2{1/sin2φ[q2λ2Q2(q21)]}=1Q2[]{Q2[][]Q2sin2φ},

x2+q2y2λ12

=

1[1+q2tan2φ(1+q2tan2φ)]{(1+tan2φ)[(1+q2tan2φ)λ2(q21)tan2φ]}.

Now, notice that,

q2y2Q2λ12

=

11[]sin2φ,

and,

x2λ12+1Q2

=

11[]sin2φ.

Hence,

x2λ12+1Q2

=

q2y2Q2λ12

0

=

Q4(q2y2λ12)Q2(x2λ12)1

 

=

Q4Q2(x2q2y2)(λ12q2y2),

where,

Q2

1+q2tan2φq2tan2φ.

Solving the quadratic equation, we have,

Q2

=

12{(x2q2y2)±[(x2q2y2)2+4(λ12q2y2)]1/2}

 

=

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Tentative Summary

λ1

(x2+q2y2+p2z2)1/2,

λ2

(x2+y2)1/2pz,

λ3=Q2

(x22q2y2){1±[1+4(λ12q2y2x4)]1/2}.

Partial Derivatives & Scale Factors

First Coordinate

λ1x

=

xλ1,

λ1y

=

q2yλ1,

λ1z

=

p2zλ1.

h12

=

(λ1x)2+(λ1y)2+(λ1z)2

=

(xλ1)2+(q2yλ1)2+(p2zλ1)2.

h1

=

λ13D,

where,

3D(x2+q4y2+p4z2)1/2.

As a result, the associated unit vector is,

e^1

=

ı^h1(λ1x)+ȷ^h1(λ1y)+k^h1(λ1z)

 

=

ı^x3D+ȷ^q2y3D+k^p2z3D.

Notice that,

e^1e^1

=

(x2+q4y2+p4z2)3D2=1.


Second Coordinate (1st Try)

λ2x

=

1pz[x(x2+y2)1/2],

λ2y

=

1pz[y(x2+y2)1/2],

λ2z

=

(x2+y2)1/2pz2.

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

{1pz[x(x2+y2)1/2]}2+{1pz[y(x2+y2)1/2]}2+{(x2+y2)1/2pz2}2

 

=

{[x2(x2+y2)p2z2]}+{[y2(x2+y2)p2z2]}+{(x2+y2)p2z4}

 

=

1p2z2+(x2+y2)p2z4=(x2+y2+z2)p2z4

h2

=

pz2r

As a result, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^[xzr(x2+y2)1/2]+ȷ^[yzr(x2+y2)1/2]k^[(x2+y2)1/2r].

Notice that,

e^2e^2

=

[x2z2r2(x2+y2)]+[y2z2r2(x2+y2)]+[(x2+y2)r2]=1.

Let's check to see if this "second" unit vector is orthogonal to the "first."

e^1e^2

=

x3D[xzr(x2+y2)1/2]+q2y3D[yzr(x2+y2)1/2]p2z3D[(x2+y2)1/2r]

 

=

3D{[x2zr(x2+y2)1/2]+[q2y2zr(x2+y2)1/2][p2z(x2+y2)1/2r]}

 

=

z3Dr(x2+y2)1/2{[x2]+[q2y2][p2(x2+y2)]}

 

0 .


Second Coordinate (2nd Try)

Let's try,

λ2

=

[(x2+q2y2+𝔣p2z2)1/2pz],

λ2x

=

xpz(x2+q2y2+𝔣p2z2)1/2=xp2z2λ2,

λ2y

=

q2ypz(x2+q2y2+𝔣p2z2)1/2=q2yp2z2λ2,

λ2z

=

𝔣p2zpz(x2+q2y2+𝔣p2z2)1/2(x2+q2y2+𝔣p2z2)1/2pz2=1p2z2λ2(𝔣p2z)λ2z=1p2z2λ2(𝔣p2zp2zλ22).

Hence,

h22

=

(λ2x)2+(λ2y)2+(λ2z)2

 

=

[xp2z2λ2]2+[q2yp2z2λ2]2+[𝔣zλ2λ2z]2

 

=

[x2+q4y2p4z4λ22]+[1zλ2(𝔣λ22)]2

 

=

1p4z4λ22[x2+q4y2+p4z2(𝔣λ22)2]

h2

=

p2z2λ2[x2+q4y2+p4z2(𝔣λ22)2]1/2.

So, the associated unit vector is,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

ı^{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+ȷ^{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+k^{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}.

Checking orthogonality …

e^1e^2

=

x3D{x[x2+q4y2+p4z2(𝔣λ22)2]1/2}+q2y3D{q2y[x2+q4y2+p4z2(𝔣λ22)2]1/2}+p2z3D{p2z(𝔣λ22)[x2+q4y2+p4z2(𝔣λ22)2]1/2}

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

 

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

If 𝔣=0, we have …

p2z(𝔣λ22)

       

[p2zλ22]𝔣=0=p2z[(x2+q2y2+𝔣0p2z2)1/2pz]2=(x2+q2y2)z,

which, in turn, means …

[x2+q4y2+p4z2(𝔣0λ22)2]1/2

=

[x2+q4y2+p4z2λ24]1/2

 

=

{x2+q4y2+p4z2[(x2+q2y2+𝔣0p2z2)1/2pz]4}1/2

 

=

{x2+q4y2+[(x2+q2y2)2z2]}1/2

 

=

(x2+q4y2)1/2[1+(x2+q2y2)z2]1/2

 

=

(x2+q4y2)1/2z[z2+(x2+q2y2)]1/2,

and,

e^1e^2

=

3D[x2+q4y2+p4z2(𝔣λ22)2]1/2{x2+q4y2+p4z2(𝔣λ22)}.

Speculation6

Determine λ2

This is very similar to the above, Speculation2. Try,

λ2

=

xy1/q2z2/p2,

in which case,

λ2x

=

λ2x,

λ2y

=

xz2/p2(1q2)y1/q21=λ2q2y,

λ2z

=

2λ2p2z.

The associated scale factor is, then,

h2

=

[(λ2x)2+(λ2y)2+(λ2z)2]1/2

 

=

[(λ2x)2+(λ2q2y)2+(2λ2p2z)2]1/2

 

=

1λ2[1x2+1q4y2+4p4z2]1/2

 

=

1λ2[(q4y2p4z2+x2p4z2+4x2q4y2x2q4y2p4z2]1/2

 

=

1λ2[xq2yp2z𝒟].

where,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.

The associated unit vector is, then,

e^2

=

ı^h2(λ2x)+ȷ^h2(λ2y)+k^h2(λ2z)

 

=

xq2yp2z𝒟{ı^(1x)+ȷ^(1q2y)+k^(2p2z)} .

Recalling that the unit vector associated with the "first" coordinate is,

e^1

ı^(x3D)+ȷ^(q2y3D)+k^(p2z3D),

where,

3D

=

(x2+q4y2+p4z2)1/2,

let's check to see whether the "second" unit vector is orthogonal to the "first."

e^1e^2

=

(xq2yp2z)3D𝒟[1+12]=0.

Hooray!


Direction Cosines for Third Unit Vector

Now, what is the unit vector, e^3, that is simultaneously orthogonal to both these "first" and the "second" unit vectors?

e^3e^1×e^2

=

ı^[(e1y)(e2z)(e2y)(e1z))]+ȷ^[(e1z)(e2x)(e2z)(e1x))]+k^[(e1x)(e2y)(e2x)(e1y))]

 

=

(xq2yp2z)3D𝒟{ı^[(2q2yp2z)(p2zq2y)]+ȷ^[(p2zx)(2xp2z)]+k^[(xq2y)(q2yx)]}

 

=

(xq2yp2z)3D𝒟{ı^[2q4y2+p4z2q2yp2z]+ȷ^[p4z2+2x2xp2z]+k^[x2q4y2xq2y]}

 

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}.

Is this a valid unit vector? First, note that …

(3D𝒟)2

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)

 

=

(x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+x2q4y2p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4+4x2q4y2p4z2)

 

=

6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(x2+q4y2).

Then we have,

(3D𝒟)2e^3e^3

=

[x(2q4y2+p4z2)]2+[q2y(p4z2+2x2)]2+[p2z(x2q4y2)]2

 

=

x2(4q8y4+4q4y2p4z2+p8z4)+q4y2(p8z4+4x2p4z2+4x4)+p4z2(x42x2q4y2+q8y4)

 

=

4x2q8y4+4x2q4y2p4z2+x2p8z4+q4y2p8z4+4x2q4y2p4z2+4x4q4y2+x4p4z22x2q4y2p4z2+q8y4p4z2

 

=

6x2q4y2p4z2+p8z4(x2+q4y2)+x4(4q4y2+p4z2)+q8y4(4x2+p4z2)

 

=

(3D𝒟)2,

which means that, e^3e^3=1.    Hooray! Again (11/11/2020)!

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


Let's double-check whether this "third" unit vector is orthogonal to both the "first" and the "second" unit vectors.

e^1e^3

=

3D2𝒟{x[x(2q4y2+p4z2)]+q2y[q2y(p4z2+2x2)]+p2z[p2z(x2q4y2)]}

 

=

3D2𝒟{(2x2q4y2+x2p4z2)+(q4y2p4z2+2x2q4y2)+(x2p4z2q4y2p4z2)}

 

=

0,

and,

e^2e^3

=

3D𝒟xq2yp2z𝒟{[(2q4y2+p4z2)]+[(p4z2+2x2)][2(x2q4y2)]}

 

=

0.

Q. E. D.

Search for Third Coordinate Expression

Let's try …

λ3

=

𝒟n3Dm

 

=

(q4y2p4z2+x2p4z2+4x2q4y2)n/2(x2+q4y2+p4z2)m/2

λ3xi

=

3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)n/21]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n[m2(x2+q4y2+p4z2)m/21]xi[(x2+q4y2+p4z2)]

 

=

𝒟n3Dm[n2(q4y2p4z2+x2p4z2+4x2q4y2)1]xi[(q4y2p4z2+x2p4z2+4x2q4y2)]

 

 

+𝒟n3Dm[m2(x2+q4y2+p4z2)1]xi[(x2+q4y2+p4z2)].


Hence,

1𝒟n3Dmλ3x

=

n2𝒟2x[q4y2p4z2+x2p4z2+4x2q4y2]m3D22x[x2+q4y2+p4z2]

 

=

x{n𝒟2[p4z2+4q4y2]m3D2}

 

=

x{n(p4z2+4q4y2)(q4y2p4z2+x2p4z2+4x2q4y2)m(x2+q4y2+p4z2)}

This is overly cluttered! Let's try, instead …

A3D2

=

(x2+q4y2+p4z2),

      and,      

B𝒟2

=

(q4y2p4z2+x2p4z2+4x2q4y2)

Ax

=

2x,

Ay

=

2q4y,

Az

=

2p4z;

Bx

=

2x(4q4y2+p4z2),

By

=

2q4y(p4z2+4x2),

Bz

=

2p4z(q4y2+x2).


Now, let's assume that,

λ3

(AB)1/2,

λ3xi

=

12(AB)1/2AxiA1/22B3/2Bxi

 

=

λ32AB[BAxiABxi].

[2ABλ3]λ3xi

=

(q4y2p4z2+x2p4z2+4x2q4y2)Axi(x2+q4y2+p4z2)Bxi.

Looking ahead …

h32

=

{λ32AB[BAxABx]}2+{λ32AB[BAyABy]}2+{λ32AB[BAzABz]}2

[2ABλ3]2h32

=

[BAxABx]2+[BAyABy]2+[BAzABz]2

[λ32AB]h3

=

{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

Then, for example,

γ31h3(λ3x)

=

[BAxABx]{[BAxABx]2+[BAyABy]2+[BAzABz]2}1/2

As a result, we have,

[2ABλ3]λ3x

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(4q4y2+p4z2)]

 

=

2x[(q4y2p4z2+x2p4z2+4x2q4y2)(4x2q4y2+x2p4z2+4q8y4+q4y2p4z2+4q4y2p4z2+p8z4)]

 

=

2x[(4q8y4+4q4y2p4z2+p8z4)]

 

=

2x(2q4y2+p4z2)2

 

=

8x(q4y2+p4z22)2

[AB]lnλ3lnx

=

[2x(q4y2+p4z22)]2;

and,

[2ABλ3]λ3y

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(p4z2+4x2)]

 

=

2q4y[(q4y2p4z2+x2p4z2+4x2q4y2)(x2p4z2+4x4+q4y2p4z2+4x2q4y2+p8z4+4x2p4z2)]

 

=

2q4y(4x4+p8z4+4x2p4z2)

 

=

2q4y(2x2+p4z2)2

[AB]lnλ3lny

=

[2q2y(x2+p4z22)]2;

and,

[2ABλ3]λ3z

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)(q4y2+x2)]

 

=

2p4z[(q4y2p4z2+x2p4z2+4x2q4y2)(x2q4y2+x4+q8y4+x2q4y2+q4y2p4z2+x2p4z2)]

 

=

2p4z[(2x2q4y2)(x4+q8y4)]

 

=

2p4z[x4+q8y42x2q4y2]

 

=

2p4z(x2q4y2)2

[AB]lnλ3lnz

=

4[(p4z24)(x2q4y2)2]

 

=

[2(p2z2)(x2q4y2)]2.

Wow!   Really close! (13 November 2020)

Just for fun, let's see what we get for h3. It is given by the expression,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

 

=

{λ3ABx[2x(q4y2+p4z22)]2}2+{λ3ABy[2q2y(x2+p4z22)]2}2+{λ3ABz[2(p2z2)(x2q4y2)]2}2

[ABλ3]2h32

=

{1x2[2x(q4y2+p4z22)]4}+{1y2[2q2y(x2+p4z22)]4}+{1z2[2(p2z2)(x2q4y2)]4}

Fiddle Around

Let …

x

[BAxABx]

=

8x(q4y2+p4z22)2

=

2x[2x(q4y2+p4z22)]2

=

8x𝔉x(y,z)

y

[BAyABy]

=

8q4y(x2+p4z22)2

=

2y[2q2y(x2+p4z22)]2

=

8y𝔉y(x,z)

z

[BAzABz]

=

2p4z(x2q4y2)2

=

2z[p2z(x2q4y2)]2

=

8z𝔉z(x,y)

With this shorthand in place, we can write,

e^3

=

3D𝒟{ı^[x(2q4y2+p4z2)]+ȷ^[q2y(p4z2+2x2)]+k^[p2z(x2q4y2)]}

 

=

1(AB)1/2{ı^[xx2]1/2+ȷ^[yy2]1/2+k^[zz2]1/2}.

We therefore also recognize that,

h3(λ3x)

=

1(AB)1/2[xx2]1/2

=

1(AB)1/2[4x2𝔉x]1/2,

h3(λ3y)

=

1(AB)1/2[yy2]1/2

=

1(AB)1/2[4y2𝔉y]1/2,

h3(λ3z)

=

1(AB)1/2[zz2]1/2

=

1(AB)1/2[4z2𝔉z]1/2.

Now, if — and it is a BIG "if" — h3=h0(AB)1/2, then we have,

h0(λ3x)

=

[4x2𝔉x]1/2

=

2x[𝔉x]1/2,

h0(λ3y)

=

[4y2𝔉y]1/2

=

2y[𝔉y]1/2,

h0(λ3z)

=

[4z2𝔉z]1/2

=

2z[𝔉z]1/2,

h0λ3

=

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2.

But if this is the correct expression for λ3 and its three partial derivatives, then it must be true that,

h32

=

(λ3x)2+(λ3y)2+(λ3z)2

(h3h0)2

=

4x2[𝔉x]+4y2[𝔉y]+4z2[𝔉z]

 

=

4x2[(q4y2+p4z22)2]+4y2[q4(x2+p4z22)2]+4z2[p44(x2q4y2)2]

 

=

x2(2q4y2+p4z2)2+q4y2(2x2+p4z2)2+p4z2(x2q4y2)2

Well … the right-hand side of this expression is identical to the right-hand side of the above expression, where we showed that it equals (3D/𝒟)2. That is to say, we are now showing that,

(h3h0)2

=

(3D𝒟)2=[AB]

h3h0

=

(AB)1/2.

And this is precisely what, just a few lines above, we hypothesized the functional expression for h3 ought to be. EUREKA!

Summary

In summary, then …

λ3

x2[𝔉x]1/2+y2[𝔉y]1/2+z2[𝔉z]1/2

 

=

x2[(q4y2+p4z22)2]1/2+y2[q4(x2+p4z22)2]1/2+z2[p44(x2q4y2)2]1/2

 

=

x2(q4y2+p4z22)+q2y2(x2+p4z22)+p2z22(x2q4y2),

and,


h3

=

(AB)1/2

 

=

[(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)]1/2.

No! Once again this does not work. The direction cosines — and, hence, the components of the e^3 unit vector — are not correct!

Speculation7

Direction Cosine Components for T6 Coordinates
n λn hn λnx λny λnz γn1 γn2 γn3
1 (x2+q2y2+p2z2)1/2 λ13D xλ1 q2yλ1 p2zλ1 (x)3D (q2y)3D (p2z)3D
2 xy1/q2z2/p2 1λ2[xq2yp2z𝒟] λ2x λ2q2y 2λ2p2z xq2yp2z𝒟(1x) xq2yp2z𝒟(1q2y) xq2yp2z𝒟(2p2z)
3 --- --- --- --- --- 3D𝒟[x(2q4y2+p4z2)] 3D𝒟[q2y(p4z2+2x2)] 3D𝒟[p2z(x2q4y2)]

3D

(x2+q4y2+p4z2)1/2,

𝒟

(q4y2p4z2+x2p4z2+4x2q4y2)1/2.


On my white-board I have shown that, if

λ33D𝒟,

then everything will work out as long as,

=

(𝒟3D)213D4,

where,

x2(2q4y2+p4z2)4+q8y2(2x2+p4z2)4+p8z2(x2q4y2)4

 

=

x2(4q8y4+4q4y2p4z2+p8z4)2+q8y2(4x4+4x2p4z2+p8z4)2+p8z2(x42x2q4y2+q8y4)2

 

=

x2[16q16y8+16q12y6p4z2+4q8y4p8z4+16q12y6p4z2+16q8y4p8z4+4q4y2p12z6+4q8y4p8z4+4q4y2p12z6+p16z8]

 

 

+q8y2[16x8+16x6p4z2+4x4p8z4+16x6p4z2+16x4p8z4+4x2p12z6+4x4p8z4+4x2p12z6+p16z8]

 

 

+p8z2[x82x6q4y2+x4q8y42x6q4y2+4x4q8y42x2q12y6+x4q8y42x2q12y6+q16y8]

 

=

x2[16q16y8+32q12y6p4z2+24q8y4p8z4+8q4y2p12z6+p16z8]

 

 

+q8y2[16x8+32x6p4z2+24x4p8z4+8x2p12z6+p16z8]

 

 

+p8z2[x84x6q4y2+6x4q8y44x2q12y6+q16y8]

Let's check this out.

RHS(𝒟3D)213D4

=

(q4y2p4z2+x2p4z2+4x2q4y2)(x2+q4y2+p4z2)3

 

=

(x2+q4y2+p4z2)(q4y2p4z2+x2p4z2+4x2q4y2)[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[(6x2q4y2p4z2+x4p4z2+4x4q4y2)+(q8y4p4z2+4x2q8y4)+(q4y2p8z4+x2p8z4)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

 

=

[6x2q4y2p4z2+x4(p4z2+4q4y2)+q8y4(p4z2+4x2)+p8z4(q4y2+x2)]

 

 

×[x4+2x2q4y2+2x2p4z2+q8y4+2q4y2p4z2+p8z4]

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |