SSC/Stability/NeutralMode

From jetwiki
Jump to navigation Jump to search

LAWE

Most General Form

In an accompanying discussion, we derived the so-called,

Adiabatic Wave (or Radial Pulsation) Equation

d2xdr02+[4r0(g0ρ0P0)]dxdr0+(ρ0γgP0)[ω2+(43γg)g0r0]x=0

where the gravitational acceleration,

g0

GMrr02=1ρ0dP0dr0g0ρ0r0P0=dlnP0dlnr0.

The solution to this equation gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. The boundary condition conventionally used in connection with the adiabatic wave equation is,

r0dlnxdr0

=

1γg(43γg+ω2R3GMtot)        at         r0=R.

Polytropic Configurations

Part 1

If the initial, unperturbed equilibrium configuration is a polytropic sphere whose internal structure is defined by the function, θ(ξ), that provides a solution to the,

Lane-Emden Equation

1ξ2ddξ(ξ2dΘHdξ)=ΘHn

then,

r0

=

anξ,

ρ0

=

ρcθn,

P0

=

Kρ0(n+1)/n=Kρc(n+1)/nθn+1,

g0

=

GM(r0)r02=Gr02[4πan3ρc(ξ2dθdξ)],

where,

an

=

[(n+1)K4πGρc(1n)/n]1/2.

Hence, after multiplying through by an2, the above adiabatic wave equation can be rewritten in the form,

d2xdξ2+[4ξg0an(an2ρ0P0)]dxdξ+(an2ρ0γgP0)[ω2+(43γg)g0anξ]x

=

0.

In addition, given that,

g0an

=

4πGρc(dθdξ),

and,

an2ρ0P0

=

(n+1)(4πGρc)θ=an2ρcPcθcθ,

we can write,

0

=

d2xdξ2+[4(n+1)V(ξ)ξ]dxdξ+[ω2(an2ρcγgPc)θcθ(34γg)(n+1)V(x)ξ2]x

 

=

d2xdξ2+[4(n+1)V(ξ)ξ]dxdξ+(n+1)[ω2(an2ρcγgPc)ξ2θc(n+1)θ(34γg)V(x)]xξ2

where we have adopted the function notation,

V(ξ)

ξθdθdξ.

Part 2

Drawing from an accompanying discussion, we have the following:

Polytropic LAWE (linear adiabatic wave equation)

0=d2xdξ2+[4(n+1)Q]1ξdxdξ+(n+1)[(σc26γg)ξ2θαQ]xξ2

where:    Q(ξ)dlnθdlnξ,    σc23ω22πGρc,     and,     α(34γg)

In order to reconcile with the "Part 1" expression, we note first that V(ξ)Q(ξ). We note as well that since,

(an2ρcPc)θc

=

(n+1)4πGρc,

we have,

ω2(an2ρcγgPc)ξ2θc(n+1)θ

ω2γg[(n+1)4πGρc]ξ2(n+1)θ=16γg[3ω22πGρc]ξ2θ=(σc26γg)ξ2θ.

All physically reasonable solutions are subject to the inner boundary condition,

dxdξ=0         at         ξ=0,

but the relevant outer boundary condition depends on whether the underlying equilibrium configuration is isolated (surface pressure is zero), or whether it is a "pressure-truncated" configuration. As is the case with the pressure-truncated isothermal spheres, discussed above, if the polytropic configuration is truncated by the pressure, Pe, of a hot, tenuous external medium, then the solution to the LAWE is subject to the outer boundary condition,

dlnxdlnξ=3         at         ξ=ξ~.

But, for isolated polytropes, the sought-after solution is subject to the more conventional boundary condition,

dlnxdlnξ=(3nn+1)+nσc26(n+1)[ξθ']         at         ξ=ξsurf.

Radial Pulsation Neutral Mode

Background

The integro-differential version of the statement of hydrostatic balance is

dPdr=GMrρr2

From our separate discussion, we have found that,

Exact Solution to the (3n<) Polytropic LAWE

σc2=0

      and      

xP3(n1)2n[1+(n3n1)(1ξθn)dθdξ].

Let's rewrite the significant functional term in this expressions in terms of basic variables. That is,

(1ξθn)dθdξ

=

(anρcr0ρ0)g04πGρcan

 

=

M(r0)4πr03ρ0.

Trial Eigenfunction & Its Derivatives

Let's adopt the following trial solution:

xt

=

abMr4πr03ρ0=abg04πGr0ρ0.

Then we have,

(1b)dxtdr0

=

ddr0[Mr4πr03ρ0]

 

=

[14πr03ρ0]dMrdr0[Mr4πr03ρ02]dρ0dr0[3Mr4πr04ρ0]

 

=

1r0[3Mr4πr04ρ0][Mr4πr03ρ02]dρ0dr0

(1b)d2xtdr02

=

ddr0{1r0[3Mr4πr04ρ0][Mr4πr03ρ02]dρ0dr0}

 

=

1r02[34πr04ρ0]dMrdr0+[3Mr4πr04ρ02]dρ0dr0+4[3Mr4πr05ρ0]

 

 

[Mr4πr03ρ02]d2ρ0dr02[14πr03ρ02]dρ0dr0dMrdr0+[3Mr4πr04ρ02]dρ0dr0+[2Mr4πr03ρ03](dρ0dr0)2

 

=

4r02+3Mr4πr05ρ0[4+dlnρ0dlnr0]+1r02[3Mr4πr03ρ01]dlnρ0dlnr0[Mr4πr03ρ02]d2ρ0dr02+[2Mr4πr05ρ0](dlnρ0dlnr0)2.

Given that,

ΔMr4πr03ρ0

=

14πG(g0r0ρ0)=[P04πGr02ρ02dlnP0dlnr0],

these expression can be rewritten as,

(r02b)dxtdr0

=

r0{13ΔΔdlnρ0dlnr0},

and,

(r02b)d2xtdr02

=

4+3Δ[4+dlnρ0dlnr0]+[3Δ1]dlnρ0dlnr0Δ(r02ρ0)d2ρ0dr02+2Δ(dlnρ0dlnr0)2.

Plug Trial Eigenfunction Into LAWE

 

LAWE

d2xdr02+[4r0(g0ρ0P0)]dxdr0+(ρ0γgP0)[ω2+(43γg)g0r0]x=0


Plugging our trial radial displacement function, xt, into the LAWE gives,

LAWE

=

(r02b)d2xtdr02(r0b)[4+dlnP0dlnr0]dxtdr0(r02b)(ρ0γgP0)[(43γg)g0r0+σc2(2πGρc3)]xt

 

=

(r02b)d2xtdr02(r0b)[4+dlnP0dlnr0]dxtdr0+(1b)1γg(dlnP0dlnr0)(43γg)xt(r02b)(ρ0γgP0)[σc2(2πGρc3)]xt

 

=

4+3Δ[4+dlnρ0dlnr0]+[3Δ1]dlnρ0dlnr0Δ(r02ρ0)d2ρ0dr02+2Δ(dlnρ0dlnr0)2

 

 

+[4+dlnP0dlnr0]{13ΔΔdlnρ0dlnr0}+(1b)1γg(dlnP0dlnr0)(43γg)(abΔ)(1b)(ρ0r02γgP0)[σc2(2πGρc3)](abΔ).

Now, if we set σc2=0 and dlnP0/dlnr0=γg(dlnρ0/dlnr0), this expression becomes,

LAWE

=

4+3Δ[4+dlnρ0dlnr0]+[3Δ1]dlnρ0dlnr0Δ(r02ρ0)d2ρ0dr02+2Δ(dlnρ0dlnr0)2

 

 

+[4+dlnP0dlnr0]{13ΔΔdlnρ0dlnr0}+(1b)1γg(dlnP0dlnr0)(43γg)(abΔ)(1b)(ρ0r02γgP0)[σc2(2πGρc3)](abΔ).

Notice that the key components of this last term may be rewritten as,

(ρ0r02γgP0)[σc2(2πGρc3)]

=

(4πGρ02r02P0)[σc26γg(ρcρ0)]

 

=

(1Δ)dlnP0dlnr0[σc26γg(ρcρ0)].

So, for our trial eigenfunction, we have …

LAWE

=

[2Δ1]dlnρ0dlnr0Δ(r02ρ0)d2ρ0dr02+2Δ(dlnρ0dlnr0)2+dlnP0dlnr0{[13ΔΔdlnρ0dlnr0]+(43γg)γg[abΔ]+σc26γg(ρcρ0)[abΔ1]}.

Consider Polytropic Structures

Referring back to, for example, a separate review of polytropic structures, we recognize that,

Δ=14πG(g0r0ρ0)

=

1ξ3[(ξ2dθdξ)]θn=1ξ(dθdξ)θn=θ'ξθn,

dlnρ0dlnr0

=

n,

dlnP0dlnr0

=

(n+1).

Also,

(r02ρ0)d2ρ0dr02

=

(ξ2ρcθn)ddξ[nρcθn1θ']

 

=

(nξ2θn)[(n1)θn2(θ')2+θn1θ']

 

=

(nξ2θ2)[(n1)(θ')2+θθ']

 

=

(nξ2θ2)[(n1)(θ')2(θn+1+2θθ'ξ)]

 

=

(nξ2θ2)[(n1)(ξθnΔ)2+θn+1]

 

=

n(n1)(ξn+1θn1Δ)2+nξ2θn1.

Hence,

LAWE

=

n(2Δ1)Δ(r02ρ0)d2ρ0dr02+2n2Δ+(n+1)[13ΔnΔ]+(n+1){(43γg)γg[abΔ]+σc26γg(ρcρ0)[abΔ1]}

 

=

2nΔn+2n2Δ+n3nΔn2Δ+13ΔnΔΔ(r02ρ0)d2ρ0dr02+(n+1){(43γg)γg[abΔ]+σc26γg(ρcρ0)[abΔ1]}

 

=

1+n2Δ(2n+3)ΔΔ(r02ρ0)d2ρ0dr02+(n+1)[4γg3][abΔ]+(n+1){σc26γg(ρcρ0)[abΔ1]}.

If, γg=(n+1)/n, we can further simplify and obtain,

LAWE

=

1+n2Δ(2n+3)ΔΔ(r02ρ0)d2ρ0dr02+[n3][abΔ]+(n+1){σc26γg(ρcρ0)[abΔ1]}

 

=

1+(n3)ab+n2Δ+(3n)Δ(2n+3)ΔΔ(r02ρ0)d2ρ0dr02+(n+1){σc26γg(ρcρ0)[abΔ1]}

Try Again

General Form of Wave Equation

 

LAWE

d2xdr02+[4r0(g0ρ0P0)]dxdr0+(ρ0γgP0)[ω2+(43γg)g0r0]x=0

Employing the substitutions,

σc2

3ω22πGρc,

α

34γg=3nn+1,

g0

GMrr02=1ρ0dP0dr0g0ρ0r0P0=dlnP0dlnr0,

Δ

Mr4πr03ρ0=14πG(g0r0ρ0)=[P04πGr02ρ02dlnP0dlnr0],

we have,

LAWE =

d2xdr02+1r0[4g0ρ0r0P0]dxdr0+[(4γg3)g0ρ0r0P0]xr02+(ρ0P0)[4πGρc(σc26γg)]x

  =

d2xdr02+1r0[4+dlnP0dlnr0]dxdr0+[αdlnP0dlnr0]xr021Δ[dlnP0dlnr0ρcρ0(σc26γg)]xr02.


In the context of polytropic configurations (see more below), we appreciate that,

ρ0ρc =

θn,

dlnP0dlnr0 =

(n+1)dlnθdlnξ=(n+1)Q,      and,

1ΔdlnP0dlnr0 =

(n+1)ξ2θn1.

Inserting these into the LAWE expression and multiplying through by the square of the polytropic length scale, an2, we obtain,

LAWE =

d2xdξ2+1ξ[4(n+1)Q]dxdξ[α(n+1)Q]xξ2+[(n+1)ξ2θ(σc26γg)]xξ2.


This is identical to what has been referred to in a separate discussion, as the

Polytropic LAWE

0=d2xdξ2+[4(n+1)Q]1ξdxdξ+(n+1)[(σc26γg)ξ2θαQ]xξ2

where:    Q(ξ)dlnθdlnξ,    σc23ω22πGρc,     and,     α(34γg)

Derivatives of Δ

Here we evaluate the first derivative of Δ with respect to r0,

dΔdr0 =

ddr0{Mr4πr03ρ0}

  =

14πr03ρ0dMrdr03Mr4πr04ρ0Mr4πr03ρ02dρ0dr0

  =

1r03Mr4πr04ρ0Mr4πr03ρ02dρ0dr0

  =

1r0{1Δ[3+dlnρ0dlnr0]}

r0dΔdr0 =

[13ΔΔdlnρ0dlnr0];

and the second derivative of Δ with respect to r0,

d2Δdr02 =

ddr0{1r0}ddr0{3Mr4πr04ρ0}ddr0{Mr4πr03ρ02dρ0dr0}

  =

1r0234π{1r04ρ0dMrdr04Mrr05ρ0Mrr04ρ02dρ0dr0}

   

14π{1r03ρ02dρ0dr0dMrdr03Mrr04ρ02dρ0dr02Mrr03ρ03[dρ0dr0]2+Mrr03ρ02d2ρ0dr02}

  =

1r023r02{1Δ[4+dlnρ0dlnr0]}1r02{[13Δ]dlnρ0dlnr02Δ[dlnρ0dlnr0]2+Δ(r02ρ0)d2ρ0dr02}

r02d2Δdr02 =

1+33Δ[4+dlnρ0dlnr0]+[13Δ]dlnρ0dlnr02Δ[dlnρ0dlnr0]2+Δ(r02ρ0)d2ρ0dr02

  =

412Δ+[16Δ]dlnρ0dlnr02Δ[dlnρ0dlnr0]2+Δ(r02ρ0)d2ρ0dr02.

Trial Eigenfunction

As above, let's adopt a trial eigenfunction of the form,

xt

=

abMr4πr03ρ0=abΔ.

Then we have,

1b[r02×LAWE]trial =

r02d2Δdr02[4+dlnP0dlnr0]r0dΔdr0+[αdlnP0dlnr0](abΔ)1Δ[dlnP0dlnr0ρcρ0(σc26γg)](abΔ)

  =

{412Δ+[16Δ]dlnρ0dlnr02Δ[dlnρ0dlnr0]2+Δ(r02ρ0)d2ρ0dr02}[4+dlnP0dlnr0][13ΔΔdlnρ0dlnr0]

   

+[αdlnP0dlnr0](abΔ)1Δ[dlnP0dlnr0ρcρ0(σc26γg)](abΔ).

Assume Polytropic Relations

If we assume that the equilibrium models are polytropes, then we know that,

ρ0θn

           

dlnρ0dlnr0=ndlnθdlnξ;

P0θn+1

           

dlnP0dlnr0=(n+1)dlnθdlnξ.

We also deduce that,

(r02ρ0)d2ρ0dr02

=

(ξ2θn)ddξ[dθndξ]

 

=

(ξ2θn)ddξ[nθn1θ']

 

=

(nξ2θn)[(n1)θn2(θ')2+θn1θ']

 

=

[n(n1)ξ2θ2](θ')2(nξ2θ)[θn+2ξθ']

 

=

n(n1)[dlnθdlnξ]2nξ2θn12ndlnθdlnξ

 

=

n(n1)Ξ2nξ2θn12nΞ,

where we have introduced the shorthand notation,

Ξ

dlnθdlnξ.


Drawing from our accompanying discussion, for example, we note as well that,

Δ

=

[P04πGr02ρ02dlnP0dlnr0]

1ΔdlnP0dlnr0

=

4πGr02ρ02P0

 

=

4πG(an2ξ2)(ρcθn)2[K1ρc(n+1)/nθ(n+1)]

 

=

4πG[(n+1)K4πGρc(1n)/n](ρc)2[K1ρc(n+1)/n]ξ2θ(n1)

 

=

(n+1)ξ2θ(n1)

Δξ2θn1

=

1(n+1)dlnP0dlnr0=Ξ.

Hence,

1b[r02×LAWE]trial =

412Δ+[16Δ]nΞ2Δ[nΞ]2+Δ[n(n1)Ξ2nξ2θn12nΞ][4+(n+1)Ξ][13ΔΔnΞ]

   

+[α(n+1)Ξ](abΔ)1Δ[(n+1)Ξρcρ0(σc26γg)](abΔ)

  =

nΞ6ΔnΞ2Δ[nΞ]2+Δ[n(n1)Ξ2nξ2θn1+2nΞ]+2(n+1)Ξ+n(n+1)Ξ2Δ

   

+[α(n+1)Ξ](ab)[α(n+1)Ξ]Δ1Δ[(n+1)Ξρcρ0(σc26γg)](abΔ)

  =

Ξ[1+n+2(n+1)+α(n+1)(ab)]+Δ[[4n+α(n+1)]Ξ+n(n1)Ξ2+n(n+1)Ξ22n2Ξ2]

   

1Δ[(n+1)Ξρcρ0(σc26γg)](abΔ)

  =

Ξ[3(n+1)+α(n+1)(ab)]Δ[4n+α(n+1)]Ξ1Δ[(n+1)Ξρcρ0(σc26γg)](abΔ)

Third Time

General Relations

Various general relations taken from above derivations:

LAWE =

d2xdr02+1r0[4+dlnP0dlnr0]dxdr0+[αdlnP0dlnr0]xr021Δ[dlnP0dlnr0ρcρ0(σc26γg)]xr02,

where,

Δ

Mr4πr03ρ0

1ΔdlnP0dlnr0 =

4πGr02ρ02P0;

r0dΔdr0 =

[13ΔΔdlnρ0dlnr0];

r02d2Δdr02 =

412Δ+[16Δ]dlnρ0dlnr02Δ[dlnρ0dlnr0]2+Δ(r02ρ0)d2ρ0dr02.

Polytropes

If polytropic relations are adopted:

Δ =

Qξ2θn1;

1ΔdlnP0dlnr0 =

(n+1)ξ2θn1;

r02×LAWE =

r02d2xdr02+[4(n+1)Q]r0dxdr0+[(n3)Q]x+1Δ[(n+1)Q1θn(σc26γg)]x;

r0dΔdr0 =

[13Δ+nΔQ]=1+(nQ3)Δ;

r02d2Δdr02 =

412Δn[16Δ]Q2n2ΔQ2+Δ(r02ρ0)d2ρ0dr02

  =

412Δn[16Δ]Q2n2ΔQ2+Δ[n(n1)Q2+2nQnQΔ]

  =

4nQ12Δ+6nQΔ2n2ΔQ2+Δ[n(n1)Q2+2nQ]nQ

  =

42nQ+Δ[6nQ2n2Q2+n(n1)Q2+2nQ12].

  =

42nQ+Δ[8nQn2Q2nQ212].

Eigenfunction Choice

Again, let's try the trial eigenfunction,

xt =

abΔ,

in which case,

1b[r02×LAWE] =

r02d2Δdr02[4(n+1)Q]r0dΔdr0+[(n3)Q](abΔ)+1Δ[(n+1)Q1θn(σc26γg)](abΔ)

  =

42nQ+Δ[8nQn2Q2nQ212][4(n+1)Q][1+(nQ3)Δ]+[(n3)Q](abΔ)

   

+1Δ[(n+1)Q1θn(σc26γg)](abΔ)

  =

42nQ+Δ[8nQn2Q2nQ212]4(4nQ12)Δ+(n+1)Q+(n+1)(nQ23Q)Δ+(n3)Q(ab)(n3)QΔ

   

+1Δ[(n+1)Q1θn(σc26γg)](abΔ)

  =

[(n+1)2n+(n3)(ab)]Q+Δ[8nQn2Q2nQ2124nQ+12+(n+1)(nQ2)3Q(n+1)+(3n)Q]

   

+1Δ[(n+1)Q1θn(σc26γg)](abΔ)

  =

[(1n)+(n3)(ab)]Q+Δ[0]+1Δ[(n+1)Q1θn(σc26γg)](abΔ).

Hence, we are left with only the σc2 term if we set,

0 =

(1n)+(n3)(ab)

(ab) =

n1n3.

We conclude, therefore, that the radial displacement function (i.e., the eigenfunction) for the neutral (σc2=0) mode of all polytropic configurations is,

xneutral =

1b[n1n3Δ]=1b[n1n3Qξ2θn1]

  =

1b(n1n3)[1+(n3n1)1ξ2θn1dlnθdlnξ]

  =

1b(n1n3)[1+(n3n1)1ξθndθdξ].

This last expression exactly matches our earlier result found for polytropic configurations if we choose an overall amplitude coefficient of the form,

b =

2n3(n3).

Hooray!

Summary

Setup

We begin with the traditional,

Adiabatic Wave (or Radial Pulsation) Equation

d2xdr02+[4r0(g0ρ0P0)]dxdr0+(ρ0γgP0)[ω2+(43γg)g0r0]x=0

This linear, adiabatic wave equation (LAWE) can straightforwardly be rewritten in the form we will refer to as the,

Δ-Highlighted LAWE

0=d2xdr02+1r0[4+dlnP0dlnr0]dxdr0+[(34γg)dlnP0dlnr0]xr021Δ[dlnP0dlnr0ρcρ0(σc26γg)]xr02

where:    ΔMr4πr03ρ0,    σc23ω22πGρc

Multiplying this Δ-Highlighted LAWE through by an2=(r0/ξ)2 and recognizing that, for polytropic configurations,

Δ =

1ξ2θn1dlnθdlnξ,

        dlnP0dlnr0 =

(n+1)dlnθdlnξ,

        1ΔdlnP0dlnr0 =

(n+1)ξ2θn1,

we immediately obtain what we have frequently referred to as the,

Polytropic LAWE

0=d2xdξ2+[4(n+1)Q]1ξdxdξ+(n+1)[(σc26γg)ξ2θαQ]xξ2

where:    Q(ξ)dlnθdlnξ,    σc23ω22πGρc,     and,     α(34γg)

Neutral-Mode Eigenfunction

In the preceding subsections of this chapter, we have demonstrated that if

γg=n+1n

α=3nn+1,

the radial displacement function (i.e., the eigenfunction) for the neutral (σc2=0) mode of all polytropic configurations is,

xneutral =

3(n3)2n[n1n3Δ],

to within an arbitrarily chosen leading scaling coefficient. More completely, if we let "LAWE" stand for the RHS of our Δ-Highlighted LAWE, then setting x=xneutral results in the expression,

1b[r02×LAWE] =

(n+1)Q1θn(σc26γg)[1Δ(n1n3)1]

  =

(n+1)(σc26γg)[ξ2θ(n1n3)1θndlnθdlnξ],

which goes to zero if σc2=0.

Parabolic Density Distribution

Here, we build upon our separate discussion of equilibrium configurations with a parabolic density distribution.

Equilibrium Structure

In an article titled, "Radial Oscillations of a Stellar Model," C. Prasad (1949, MNRAS, 109, 103) investigated the properties of an equilibrium configuration with a prescribed density distribution given by the expression,

ρ0=ρc[1(r0R)2],

where, ρc is the central density and, R is the radius of the star. Both the mass distribution and the pressure distribution can be obtained analytically from this specified density distribution. Specifically,

Mr

=

0r04πr02ρ0dr0

 

=

4πρcr033[135(r0R)2],

in which case we can write,

g0GMrr02

=

4πGρcr03[135(r0R)2],

and,

ΔMr4πr03ρ0

=

13[135(r0R)2][1(r0R)2]1.

Hence, proceeding via what we have labeled as "Technique 1", and enforcing the surface boundary condition, P(R)=0, Prasad (1949) determines that,

P0

=

4πGρc2R215[1(r0R)2]2[112(r0R)2],

where, it can readily be deduced, as well, that the central pressure is,

Pc=4π15Gρc2R2.

Specific Entropy Distribution


For purposes of later discussion, we find from a separate examination of specific entropy distributions, s0(r0), that,

s0/μ¯

=

1(γg1)ln(τ0ρ0)γg=1(γg1)ln[P0(γg1)ρ0γg]

[γg1/μ¯]s0

=

ln[Pc(γg1)ρcγg]+ln{[1(r0R)2]2[112(r0R)2]}+ln{[1(r0R)2]γg}

 

=

ln[Pc(γg1)ρcγg]+ln{[112(r0R)2]}+(2γg)ln{[1(r0R)2]}.

Notice that, independent of the value of γg, the specific entropy varies with r0 throughout the structure. According to the Schwarzschild criterion, spherically symmetric equilibrium configurations will be stable against convection if the specific entropy increases outward, and unstable toward convection if the specific entropy decreases outward. Let's examine the slope, ds0/dr0, throughout configurations that have a parabolic density distribution.

[γg1/μ¯]ds0dr0

=

r0R2[112(r0R)2]12(2γg)r0R2[1(r0R)2]1

R2r0[112(r0R)2][1(r0R)2][γg1/μ¯]ds0dr0

=

[1(r0R)2]2(2γg)[112(r0R)2]

 

=

(2γg5)+(3γg)[(r0R)2]

The slope is zero when,

(r0R)2

=

52γg3γg.

Moving from the center of the configuration to its surface, 0<(r0/R)2<1, the slope will go to zero — hence, the slope of the entropy will change sign

Some Relevant Structural Derivatives

We note for later use that,

1PcdP0dr0

=

[1(r0R)2]2ddr0[112(r0R)2]+[112(r0R)2]ddr0[1(r0R)2]2

 

=

12R2[1(r0R)2]2ddr0[r02]+2[1(r0R)2][112(r0R)2]ddr0[1(r0R)2]

 

=

{12R2[1(r0R)2]22R2[1(r0R)2][112(r0R)2]}ddr0[r02]

 

=

r0R2{[1(r0R)2]2+4[1(r0R)2][112(r0R)2]}

 

=

r0R2{[1(r0R)2]+4[112(r0R)2]}[1(r0R)2]

 

=

5r0R2[135(r0R)2][1(r0R)2].

Checking for detailed force-balance, we note that,

1ρ0dP0dr0

=

5r0R2[4πGρc2R215][135(r0R)2][1(r0R)2]1ρc[1(r0R)2]1

 

=

4πGρcr03[135(r0R)2],

which is exactly the expression that we have just derived for g0=GMr/r02.

Hence,

dlnP0dlnr0=r0P0/Pc[1PcdP0dr0]

=

5r02R2[135(r0R)2][1(r0R)2]{[1(r0R)2]2[112(r0R)2]}1

 

=

5(r0R)2[135(r0R)2][1(r0R)2]1[112(r0R)2]1;

and, given that,

Δ1

=

3[135(r0R)2]1[1(r0R)2],

we can write,

1ΔdlnP0dlnr0

=

15(r0R)2[135(r0R)2][1(r0R)2]1[112(r0R)2]1[135(r0R)2]1[1(r0R)2]

 

=

15(r0R)2[112(r0R)2]1.

Also,

3dΔdr0

=

ddr0{[135(r0R)2][1(r0R)2]1}

 

=

[135(r0R)2]ddr0[1(r0R)2]1+[1(r0R)2]1ddr0[135(r0R)2]

 

=

[135(r0R)2][1(r0R)2]22r0R2+[1(r0R)2]1[65r0R2]

 

=

r0R2{2[135(r0R)2][1(r0R)2]265[1(r0R)2]1}

 

=

r05R2[1(r0R)2]2{[106(r0R)2][66(r0R)2]}

 

=

4r05R2[1(r0R)2]2

dΔdr0

=

4r015R2[1(r0R)2]2;

and,

15R24d2Δdr02

=

[1(r0R)2]22r0[1(r0R)2]3[2r0R2]

 

=

[1(r0R)2]3{[1(r0R)2]+4r02R2}

 

=

[1(r0R)2]3[1+3(r0R)2].

Neutral Mode

Again, adopting the trial eigenfunction,

xt =

abΔ,

from the,

Δ-Highlighted LAWE

0=d2xdr02+1r0[4+dlnP0dlnr0]dxdr0+[(34γg)dlnP0dlnr0]xr021Δ[dlnP0dlnr0ρcρ0(σc26γg)]xr02

where:    ΔMr4πr03ρ0,    σc23ω22πGρc

we can write,

LAWE =

bd2Δdr02br0[4+dlnP0dlnr0]dΔdr0+α[dlnP0dlnr0](abΔ)r021Δ[dlnP0dlnr0ρcρ0(σc26γg)](abΔ)r02

First Attempt

1b[r02×LAWE] =

r02d2Δdr02r0[4+dlnP0dlnr0]dΔdr0+α[dlnP0dlnr0](abΔ)1Δ[dlnP0dlnr0ρcρ0(σc26γg)](abΔ)

  =

r02d2Δdr02

   

r0[4+dlnP0dlnr0]dΔdr0

   

+α[dlnP0dlnr0](abΔ)

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

  =

415(r0R)2[1(r0R)2]3[1+3(r0R)2]

   

1615(r0R)2[1(r0R)2]2415(r0R)2{5(r0R)2[135(r0R)2][1(r0R)2]1[112(r0R)2]1}[1(r0R)2]2

   

+α{5(r0R)2[135(r0R)2][1(r0R)2]1[112(r0R)2]1}{abΔ}

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

  =

43(r0R)2[115(r0R)2][1(r0R)2]3

   

+43(r0R)4[135(r0R)2][112(r0R)2]1[1(r0R)2]3

   

+5α3(r0R)2[135(r0R)2][1(r0R)2]2[112(r0R)2]1{13ab35(r0R)2}

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

  =

43(r0R)2[115(r0R)2][1(r0R)2]3+5α3(r0R)2[135(r0R)2][1(r0R)2]2[112(r0R)2]1(13ab)

   

+43(r0R)4[135(r0R)2][112(r0R)2]1[1(r0R)2]3α(r0R)4[135(r0R)2][1(r0R)2]2[112(r0R)2]1

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

Continuing …

1b[r02×LAWE] =

(r0R)2[1(r0R)2]3[112(r0R)2]1{5α3(13ab)[135(r0R)2][1(r0R)2]43[115(r0R)2][112(r0R)2]}

   

+(43α)(r0R)4[135(r0R)2][112(r0R)2]1[1(r0R)2]3

   

α(r0R)6[135(r0R)2][112(r0R)2]1[1(r0R)2]3

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

  =

(r0R)2[112(r0R)2]1[1(r0R)2]3{5α3(13ab)[185(r0R)2+35(r0R)4]43[175(r0R)2+110(r0R)4]

   

+(43α)(r0R)2[135(r0R)2]α(r0R)4[135(r0R)2]}

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

  =

(r0R)2[112(r0R)2]1[1(r0R)2]3{[5α3(13ab)43]

   

+(r0R)2[8α3(13ab)+2815]+(r0R)4[α(13ab)215]

   

+(43α)(r0R)2[135(r0R)2]α(r0R)4[135(r0R)2]}

   

+ρcρ0(σc26γg){[dlnP0dlnr0]ab[1ΔdlnP0dlnr0]}

Second Attempt

1b[r02×LAWE] =

r02d2Δdr02r0[4]dΔdr0+[dlnP0dlnr0][r0dΔdr0+α(abΔ)]+[dlnP0dlnr0](σc26γg){1ab[1Δ]}ρcρ0,

where,

ρ0ρc =

(1x2),

Δ =

13(135x2)(1x2)1,

dlnP0dlnr0 =

5x2(135x2)(1x2)1(112x2)1=15x2(112x2)1Δ,

r0dΔdr0 =

415x2(1x2)2,

r02d2Δdr02 =

415x2(1x2)3(1+3x2).

Hence,

1b[r02×LAWE] =

r02d2Δdr02r0[4]dΔdr0

   

+[dlnP0dlnr0][r0dΔdr0+α(abΔ)]

   

+[dlnP0dlnr0](σc26γg){1ab[1Δ]}ρcρ0

  =

415x2(1x2)3(1+3x2)1615x2(1x2)2

   

+[dlnP0dlnr0][aαb415x2(1x2)2α3(135x2)(1x2)1]

   

+[dlnP0dlnr0](σc26γg){13ab(135x2)1(1x2)}(1x2)1.

1x2(1x2)1b[r02×LAWE] =

415(1x2)2(1+3x2)1615(1x2)1

   

5(135x2)(112x2)1[aαb415x2(1x2)2α3(135x2)(1x2)1]

   

5(135x2)(112x2)1(σc26γg){13ab(135x2)1(1x2)}(1x2)1

1x2(1x2)31b[r02×LAWE] =

415(1+3x2)1615(1x2)

   

5(135x2)(112x2)1[aαb(1x2)2415x2α3(135x2)(1x2)]

   

5(112x2)1(σc26γg){(135x2)3ab(1x2)}(1x2)

15x2(1x2)3(112x2)1b[r02×LAWE] =

2(2x2)(5x2)

   

(53x2)[15aαb(12x2+x4)4x2α(58x2+3x4)]

   

(5σc22γg){(53x2)15ab(1x2)}(1x2)

15x2(1x2)3(112x2)1b[r02×LAWE] =

2014x2+2x4+(53x2)[(15aαb5α)+x2(30aαb4+8α)+αx4(15ab3)]

   

+(5σc22γg)[(515ab)+x2(3+15ab)](1x2).

Now, if we set (15a/b)=3, this last expression reduces to,

15x2(1x2)3(112x2)1b[r02×LAWE] =

2014x2+2x42(53x2)[α+x2(27α)]+(5σc2γg)(1x2)

  =

2014x2+2x42[5α+x2(1038α)+x4(21α6)]+(5σc2γg)(1x2)

  =

x0[2010α+(5σc2γg)]+x2[76α34(5σc2γg)]+14x4[13α]

See Also

Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |