ThreeDimensionalConfigurations/ChallengesPt2

From jetwiki
Jump to navigation Jump to search

Challenges Constructing Ellipsoidal-Like Configurations (Pt. 2)

This chapter extends an accompanying chapter titled, Construction Challenges (Pt. 1). The focus here is on an SCF technique that will incorporate specification of a Lagrangian flow-flied.

Motivation

Where Are We Headed?

In a separate discussion, we have shown that, as viewed from a frame that "tumbles" with the (purple) body of a Type 1 Riemann ellipsoid, each Lagrangian fluid element moves along an elliptical path in a plane that is tipped by an angle θ about the x-axis of the body. (See the yellow-dotted orbits in Figure panels 1a and 1b below). As viewed from the (primed) coordinates associated with this tipped plane, by definition, z' = 0 and dz'/dt = 0, and the planar orbit is defined by the expression for an,

Off-Center Ellipse

1

=

(xxmax)2+(yy0ymax)2.

As a function of time, the x'-y' coordinates and associated velocity components of each Lagrangian fluid element are given by the expressions,

x

=

xmaxcos(φ˙t)

      and,      

yy0

=

ymaxsin(φ˙t),

x˙

=

xmaxφ˙sin(φ˙t)=(y0y)[xmaxymax]φ˙

      and,      

y˙

=

ymaxφ˙cos(φ˙t)=x[ymaxxmax]φ˙.

Notice that this is a divergence-free flow-field:

Divergence

v

=

x˙x+y˙y+z˙z

 

=

x[(yy0)φ˙(xmaxymax)]+y[xφ˙(ymaxxmax)]

 

=

0.


Also, along the lines of our accompanying discussion of Riemann S-Type Ellipoids, it is useful to develop the expression for the fluid vorticity as viewed from the rotating- and tipped-reference frame.

Vorticity

ζ×𝐯

=

ı^[z˙yy˙z]+ȷ^[x˙zz˙x]+k^[y˙xx˙y]

 

=

ı^(xφ˙)z[ymaxxmax]+ȷ^{φ˙(y0y)z[xmaxymax]+φ˙[xmaxymax]y0z}+k^[ymaxxmaxxmaxymax]φ˙.

Further evaluation is completed, below, after we determine how y0 and [xmax/ymax]±1 depend on z0; and after appreciating that, in order to introduce the functional dependence on z0 in every relevant expression, we need to make the replacement, z0(z0+zcosθ). <==    Figure this out!


In the subsections of this chapter that follow, we provide analytic expressions for these various quantities — xmax,ymax,y0,φ˙ — in terms of the properties of any chosen Type 1 Riemann ellipsoid.

Intersection of Tipped Plane With Ellipsoid Surface

Body Frame

In a an early subsection of the accompanying discussion, we have pointed out that the intersection of each Lagrangian fluid element's tipped orbital plane with the surface of the (purple) ellipsoidal surface is given by the (unprimed) body-frame coordinates that simultaneously satisfy the expressions,

1

=

(xa)2+(yb)2+(zc)2

        and,        

z

=

ytanθ+z0,

where z0 is the location where the tipped plane intersects the z-axis of the body frame. Combining these two expressions, we see that an intersection between the tipped plane and the ellipsoidal surface will occur at (x, y)-coordinate pairs that satisfy what we will henceforth refer to as the,

Intersection Expression

1x2a2

=

y2b2+[ytanθ+z0c]2

 

=

y2[c2+b2tan2θb2c2]+y[2z0tanθc2]+z02c2,

as long as z0 lies within the range,

z02

c2+b2tan2θ.

Tipped Orbital Plane

A table provided in our accompanying discussion shows how to transform from the body-frame coordinates (unprimed) to the (primed) frame that aligns with the Lagrangian fluid element's orbit. Specifically,

x

=

x,

y

=

ycosθzsinθ,

(zz0)

=

zcosθ+ysinθ.

Primed Coordinates

x

=

x,

y

=

ycosθ+(zz0)sinθ,

z

=

(zz0)cosθysinθ.

NOTE:    z0z0+zcosθ.    <==     Figure this out!

Using the 2nd and 3rd of these relations, we see from the equation that defines the "tipped plane," that,

z0+zcosθ+ysinθ

=

[ycosθzsinθ]tanθ+z0

z[cosθ+tanθsinθ]

=

y[cosθtanθsinθ]

zcosθ

=

0

z

=

0.

Hence, as viewed from the primed coordinate frame, all points of intersection between the tipped plane and the surface of the ellipsoid will be found in the z=0 plane, as desired. Inserting the 1st and 2nd of these relations into the above-defined Intersection Expression, we find,

1(x)2a2

=

[ycosθz0sinθ]2[c2+b2tan2θb2c2]+[ycosθz0sinθ][2z0tanθc2]+z02c2

 

=

(y)2[c2cos2θ+b2sin2θb2c2]2(y)[z0sinθc2]+z02c2.

Off-Center Ellipse

Now we attempt to transform this last expression into the form of the above-defined equation for an Off-Center Ellipse, which we rewrite here as,

1(x)2xmax2

=

1ymax2[(y)22(y)y0+y02].

An initial rearrangement of the relevant "last" expression gives,

1z02c2(x)2a2

=

c2cos2θ+b2sin2θb2c2[(y)22(y)(z0b2sinθc2cos2θ+b2sin2θ)y0],

which, as indicated, allows us to identify the appropriate expression for the y-offset, y0.

RESULT 1
(compare with Result 2)

y0z0

=

b2sinθc2cos2θ+b2sin2θ=sinθc2κ2

Dividing through by the leading coefficient,

κ2c2cos2θ+b2sin2θb2c2,

then adding y02 to both sides gives,

(y)22(y)y0+y02

=

1κ2[1z02c2(x)2a2]+y02

 

=

[1κ2z02c2κ2+y02]ymax2(x)2κ2a2,

which gives us the appropriate expression for ymax2. Finally, dividing through by ymax2 gives,

1ymax2[(y)22(y)y0+y02]

=

1(x)2[1ymax2κ2a2]1/xmax2,

which identifies the appropriate expression for xmax2. As viewed from the "tipped plane" (primed) coordinate frame, then, the equation for the orbit of each Lagrangian fluid element is that of an …

Off-Center Ellipse

1

=

(xxmax)2+(yy0ymax)2,

with,

y0

z0b2sinθc2cos2θ+b2sin2θ,

ymax2

1κ2(1z02c2)+y02

 

=

b2(c2z02)c2cos2θ+b2sin2θ+[z0b2sinθc2cos2θ+b2sin2θ]2

 

=

b2{(c2z02)(c2cos2θ+b2sin2θ)+z02b2sin2θ(c2cos2θ+b2sin2θ)2},

 

=

b2c2{(c2z02)cos2θ+b2sin2θ(c2cos2θ+b2sin2θ)2},

xmax2

a2κ2ymax2

 

=

a2{(c2z02)cos2θ+b2sin2θc2cos2θ+b2sin2θ}.

Note that the ratio,

[xmaxymax]2

=

a2[(c2z02)cos2θ+b2sin2θc2cos2θ+b2sin2θ]1b2c2[(c2cos2θ+b2sin2θ)2(c2z02)cos2θ+b2sin2θ]

 

=

a2b2c2[(c2cos2θ+b2sin2θ)],

which is independent of z0.

Velocities

Tipped Orbit Velocities

From the generic expressions for (primed) velocities associated with an off-center elliptical orbit, we expect,

x˙φ˙

=

xmaxsin(φ˙t)=(yy0)[xmaxymax],       and,      

y˙φ˙

=

ymaxcos(φ˙t)=x[ymaxxmax].

Body Frame Velocities

From the already-referenced table provided in our accompanying discussion, we can transform this pair of expressions for the velocity components in the "tipped orbit" frame — remember that the third component, z˙=0 — into the (three-component) velocities of the body frame using the expressions,

x˙

=

x˙,

y˙

=

y˙cosθ,

z˙

=

y˙sinθ.

x

x,

y

ycosθ+(zz0)sinθ,

z

(zz0)cosθysinθ.

That is to say,

x˙φ˙

=

(yy0)[xmaxymax]=[xmaxymax]{y0[ycosθ+(zz0)sinθ]},

y˙φ˙

=

x[ymaxxmax]cosθ=x[ymaxxmax]cosθ,

z˙φ˙

=

x[ymaxxmax]sinθ=x[ymaxxmax]sinθ,

where,

[xmaxymax]2

=

a2b2c2[c2cos2θ+b2sin2θ].

Notice that the all-important tipping angle, θ, is related to these body-frame velocity components via the simple relation,

tanθ

=

(z˙y˙).

Vorticity Determination

Given that the ratio, (xmax/ymax), does not depend on z, and that, after mapping z0(z0+zcosθ), we find,

y0z

=

z[(z0+zcosθ)b2sinθc2cos2θ+b2sin2θ]=b2sinθcosθc2cos2θ+b2sin2θ=b2sinθcosθ(a2b2c2)[ymaxxmax]2,

the above vorticity expression becomes,

ζ×𝐯

=

ı^(xφ˙)z[ymaxxmax]0+ȷ^{φ˙(y0y)z[xmaxymax]0+φ˙[xmaxymax]y0z}+k^[ymaxxmaxxmaxymax]φ˙

 

=

ȷ^[xmaxymax]b2sinθcosθ(a2b2c2)[ymaxxmax]2φ˙+k^[ymaxxmaxxmaxymax]φ˙

 

=

[ymaxxmax]φ˙{ȷ^sinθcosθ(a2c2)+k^[1xmax2ymax2]}.

Referring back to our aboved-defined tipped plane, we see that the unprimed Cartesian unit vectors are related to the primed unit vectors via the relations …

ȷ^

=

ȷ^cosθ+k^sinθ,

k^

=

ȷ^sinθ+k^cosθ.

Hence, from the perspective of the body frame, the expression for the vorticity becomes,

ζ

=

[ymaxxmax]φ˙{[ȷ^cosθ+k^sinθ]sinθcosθ(a2c2)+[ȷ^sinθ+k^cosθ][1xmax2ymax2]}

 

=

1cosθ[b2ζ3a2+b2]{ȷ^sinθcos2θ(a2c2)k^sin2θcosθ(a2c2)ȷ^sinθ[1xmax2ymax2]+k^cosθ[1xmax2ymax2]}

 

=

[b2ζ3a2+b2]{ȷ^[1xmax2ymax2+cos2θ(a2c2)]tanθ+k^[1xmax2ymax2sin2θ(a2c2)]}.

Now, we appreciate that,

1xmax2ymax2

=

1a2b2c2(c2cos2θ+b2sin2θ)=1(a2b2)cos2θ(a2c2)sin2θ.

Hence,

ζ

=

[b2ζ3a2+b2]{ȷ^[1(a2b2)cos2θ(a2c2)sin2θ+cos2θ(a2c2)]tanθ+k^[1(a2b2)cos2θ(a2c2)sin2θsin2θ(a2c2)]}

 

=

+ȷ^[1(a2b2)cos2θ(a2c2)sin2θ+cos2θ(a2c2)][c2ζ2a2+c2]+k^[1(a2b2)cos2θ(a2c2)sin2θsin2θ(a2c2)][b2ζ3a2+b2]

 

=

+ȷ^{1(a2b2c2)[c2cos2θ+b2sin2θb2cos2θ]}[c2ζ2a2+c2]+k^{1(a2b2c2)[c2cos2θ+b2sin2θ+b2sin2θ]}[b2ζ3a2+b2]

 

=

+ȷ^{c2(a2b2)[c2cos2θ+b2sin2θb2cos2θ]}[ζ2a2+c2]+k^{b2(a2c2)[c2cos2θ+b2sin2θ+b2sin2θ]}[ζ3a2+b2]

 

=

+ȷ^{c2(a2b2)[b2+c2cos2θ2b2cos2θ]}[ζ2a2+c2]+k^{b2(a2c2)[c2c2sin2θ+2b2sin2θ]}[ζ3a2+b2]

Riemann-Derived Velocity Components

Inertial-Frame Expressions

As we have summarized in an accompanying discussion of Riemann Type 1 ellipsoids, [EFE] provides an expression for the velocity vector of each fluid element, given its instantaneous body-coordinate position (x, y, z) = (x1, x2, x3) — see his Eq. (154), Chapter 7, §51 (p. 156). As viewed from the rotating frame of reference, the three component expressions are,

x˙=u1

=

(ab)2γΩ3y(ac)2βΩ2z

=

[a2a2+b2]ζ3y+[a2a2+c2]ζ2z,

y˙=u2

=

γΩ3x

=

+[b2a2+b2]ζ3x,

z˙=u3

=

+βΩ2x

=

[c2a2+c2]ζ2x,

where,

β

=

[c2a2+c2]ζ2Ω2

      and,      

γ

=

[b2a2+b2]ζ3Ω3.

Rotating-Frame Vorticity

ζ×𝐮

=

ı^[z˙yy˙z]+ȷ^[x˙zz˙x]+k^[y˙xx˙y]

 

=

ȷ^{[a2a2+c2]ζ2+[c2a2+c2]ζ2}+k^{[b2a2+b2]ζ3+[a2a2+b2]ζ3}

 

=

ȷ^ζ2+k^ζ3.

In the inertial frame, the velocity components are,

𝐮(0)=𝐮+Ω×𝐱

=

(ı^x˙+ȷ^y˙+k^z˙)+(ȷ^Ω2+k^Ω3)×(ı^x+ȷ^y+k^z)

 

=

(ı^x˙+ȷ^y˙+k^z˙)+Ω2(ı^zk^x)+Ω3(ȷ^xı^y)

 

=

ı^(x˙+Ω2zΩ3y)+ȷ^(y˙+Ω3x)+k^(z˙Ω2x)

 

=

ı^[(ab)2γΩ3y(ac)2βΩ2z+Ω2zΩ3y]+ȷ^[γΩ3x+Ω3x]+k^[+βΩ2xΩ2x]

 

=

ı^{[(ab)2γ1]Ω3y+[1(ac)2β]Ω2z}+ȷ^(1γ)Ω3x+k^(β1)Ω2x.

Inertial-Frame Vorticity

ζ(0)=×𝐮(0)

=

ı^[0]+ȷ^{[1(ac)2β]Ω2+(1β)Ω2}+k^{(1γ)Ω3+[1(ab)2γ]Ω3}

 

=

ȷ^[1(ac)2β+(1β)]Ω2+k^[(1γ)+1(ab)2γ]Ω3

 

=

ȷ^[2(1+a2c2)β]Ω2+k^[2(1+a2b2)γ]Ω3

 

=

ȷ^[2+ζ2Ω2]Ω2+k^[2+ζ3Ω3]Ω3

 

=

2Ω+ζ.

Coefficient Expression in Tipped Plane

In order for our expressions for the body-frame velocity components to align with Riemann's velocity components, we see, first, that,

tanθ

=

z˙y˙=ζ2ζ3[a2+b2a2+c2]c2b2.

As a result, we find that,

b2c2a2[xmaxymax]2

=

c2cos2θ+b2sin2θ=c2+b2tan2θ1+tan2θ

 

=

[c2+b2ζ22ζ32(a2+b2a2+c2)2c4b4][1+ζ22ζ32(a2+b2a2+c2)2c4b4]1

[xmaxymax]2

=

a2[b2ζ32(a2+c2)2+c2ζ22(a2+b2)2][b4ζ32(a2+c2)2+c4ζ22(a2+b2)2]1.

Finally, setting the (square of the) two expressions for the y˙ velocity component equal to one another gives,

[b2a2+b2]2ζ32

=

φ˙2[ymaxxmax]2cos2θ

φ˙2

=

ζ32[b2a2+b2]2[xmaxymax]2[1+tan2θ]

 

=

a2ζ32[b2a2+b2]2[b2ζ32(a2+c2)2+c2ζ22(a2+b2)2][b4ζ32(a2+c2)2+c4ζ22(a2+b2)2]1{1+[ζ2ζ3(a2+b2a2+c2)c2b2]2}

 

=

[a2b4ζ32(a2+b2)2][b2ζ32(a2+c2)2+c2ζ22(a2+b2)2][b4ζ32(a2+c2)2+c4ζ22(a2+b2)2]1{b4ζ32(a2+c2)2+c4ζ22(a2+b2)2b4ζ32(a2+c2)2}

 

=

a2(a2+b2)2(a2+c2)2[b2ζ32(a2+c2)2+c2ζ22(a2+b2)2]

Try Tipped Plane Again

x˙φ˙

=

(yy0)[xmaxymax],       and,      

y˙φ˙

=

x[ymaxxmax].

tanθ

=

ζ2ζ3[a2+b2a2+c2]c2b2=βΩ2γΩ3,

where,

β

=

[c2a2+c2]ζ2Ω2

      and,      

γ

=

[b2a2+b2]ζ3Ω3.

Also,

[xmaxymax]2(1+tan2θ)

=

a2b2c2(c2+b2tan2θ),

and,

φ˙2

=

ζ32[b2a2+b2]2[xmaxymax]2[1+tan2θ].

and,

y0

=

(z0+zcosθ)b2sinθc2cos2θ+b2sin2θ.


ȷ^

=

ȷ^cosθk^sinθ,

k^

=

ȷ^sinθ+k^cosθ.

Ω=ȷ^Ω2+k^Ω3

=

Ω2(ȷ^cosθk^sinθ)+Ω3(ȷ^sinθ+k^cosθ)

 

=

ȷ^(Ω2cosθ+Ω3sinθ)+k^(Ω2sinθ+Ω3cosθ).

In the inertial reference frame,

𝐮(0)=𝐮+Ω×𝐱

=

(ı^x˙+ȷ^y˙+k^z˙0)+[ȷ^(Ω2cosθ+Ω3sinθ)+k^(Ω2sinθ+Ω3cosθ)]×(ı^x+ȷ^y+k^z)

 

=

ı^x˙+ȷ^y˙+[k^(Ω2cosθ+Ω3sinθ)x]+[ı^(Ω2cosθ+Ω3sinθ)z]+[ȷ^(Ω2sinθ+Ω3cosθ)x]+[ı^(Ω2sinθ+Ω3cosθ)y]

 

=

ı^[x˙+(Ω2sinθΩ3cosθ)y+(Ω2cosθ+Ω3sinθ)z]+ȷ^[y˙+(Ω2sinθ+Ω3cosθ)x]k^[(Ω2cosθ+Ω3sinθ)x].

Inertial-Frame Vorticity in Primed Frame

ζ(0)×𝐮(0)

=

ı^[uzyuyz](0)+ȷ^[uxzuzx](0)+k^[uyxuxy](0)

 

=

ı^[0]+ȷ^[x˙z+(Ω2cosθ+Ω3sinθ)+(Ω2cosθ+Ω3sinθ)]+k^[y˙x+(Ω2sinθ+Ω3cosθ)x˙y(Ω2sinθΩ3cosθ)]

 

=

2Ω+ȷ^[x˙z]+k^[y˙xx˙y]

We appreciate that,

x˙z

=

z[(y0y)φ˙(xmaxymax)]=φ˙(xmaxymax)y0z=φ˙(xmaxymax)[b2sinθcosθc2cos2θ+b2sin2θ].

Hence,

ζ(0)

=

2Ωȷ^φ˙(xmaxymax)[b2sinθcosθc2cos2θ+b2sin2θ]+k^[(ymaxxmax)+(xmaxymax)]φ˙.

Recognizing that,

φ˙[ymaxxmax]

=

ζ3cosθ[b2a2+b2],

and rearranging terms, we have,

ζ(0)2Ω

=

φ˙(ymaxxmax){ȷ^(xmaxymax)2[b2sinθcosθc2cos2θ+b2sin2θ]+k^[1+(xmaxymax)2]}

 

=

ζ3cosθ[b2a2+b2]{ȷ^(xmaxymax)2[b2sinθcosθc2cos2θ+b2sin2θ]+k^[1+(xmaxymax)2]}

 

=

ζ3cosθ[b2a2+b2]{ȷ^a2b2c2(c2cos2θ+b2sin2θ)[b2sinθcosθc2cos2θ+b2sin2θ]+k^[1+a2b2c2(c2cos2θ+b2sin2θ)]}

 

=

ȷ^a2c2[sinθcosθ]ζ3cosθ[b2a2+b2]+k^[1+a2b2c2(c2cos2θ+b2sin2θ)]ζ3cosθ[b2a2+b2]

 

=

ȷ^[a2ζ2a2+c2]cosθ+k^[1]ζ3cosθ[b2a2+b2]+k^[a2b2c2(c2cos2θ)]ζ3cosθ[b2a2+b2]+k^[a2b2c2(b2sin2θ)]ζ3cosθ[b2a2+b2]

 

=

ȷ^[a2ζ2a2+c2]cosθ+k^ζ3cosθ[b2a2+b2]+k^[a2ζ3a2+b2]cosθ+k^[tanθ]ζ3c2[a2b2a2+b2]sinθ

 

=

ȷ^[a2ζ2a2+c2]cosθ+k^ζ3cosθ[b2a2+b2]+k^[a2ζ3a2+b2]cosθk^[a2ζ2a2+c2]sinθ

 

=

(ȷ^cos2θ+k^sinθcosθ)[a2ζ2a2+c2]+(ȷ^sinθ+k^cosθ){ζ3cosθ[b2a2+b2]+[a2ζ3a2+b2]cosθ[a2ζ2a2+c2]sinθ}

 

=

(ȷ^cos2θ)[a2ζ2a2+c2]+(ȷ^sinθ){ζ3cosθ[b2a2+b2]+[a2ζ3a2+b2]cosθ[a2ζ2a2+c2]sinθ}

 

 

+(k^cosθ){ζ3cosθ[b2a2+b2]+[a2ζ3a2+b2]cosθ[a2ζ2a2+c2]sinθ}+(k^sinθcosθ)[a2ζ2a2+c2]

 

=

ȷ^[a2ζ2a2+c2]ȷ^{b2+a2cos2θ}ζ3a2+b2tanθ+k^{b2+a2cos2θ}ζ3a2+b2

 

=

ȷ^[a2ζ2a2+c2]+ȷ^{b2+a2cos2θ}ζ2a2+c2c2b2+k^{b2+a2cos2θ}ζ3a2+b2




tanθ

=

ζ2ζ3[a2+b2a2+c2]c2b2=βΩ2γΩ3,

ζ3c2[a2b2a2+b2]sinθ

=

[a2ζ2a2+c2]cosθ

1cosθ[ζ3b2a2+b2]

=

[c2ζ2a2+c2]1sinθ

Example Equilibrium Model

These key parameters have been drawn from [EFE] Chapter 7, Table XIII (p. 170):

a=a1=1
b=a2=1.25
c=a3=0.4703
Ω2=0.3639
Ω3=0.6633
ζ2=2.2794
ζ3=1.9637

As a consequence — see an accompanying discussion for details — the values of other parameters are …

    Example Values

tanθ

=

ζ2ζ3[a2+b2a2+c2]c2b2=0.344793

       

θ=

19.0238

Λ

[a2a2+b2]ζ3cosθ[a2a2+c2]ζ2sinθ

       

Λ=

1.332892

y0z0

=

[a2a2+c2]ζ2Λ

       

y0z0=

+1.400377

xmaxymax

=

{Λ[a2+b2b2]cosθζ3}1/2

       

    xmaxymax=

+1.025854

φ˙

=

{Λ[b2a2+b2]ζ3cosθ}1/2

       

φ˙=

+1.299300

COLLADA-Based Representation

As has been described in an accompanying discussion of Riemann Type 1 ellipsoids, we have used COLLADA to construct an animated and interactive 3D scene that displays in purple the surface of an example Type I ellipsoid; panels a and b of Figure 1 show what this ellipsoid looks like when viewed from two different perspectives. (As a reminder — see the explanation accompanying Figure 2 of that accompanying discussion — the ellipsoid is tilted about the x-coordinate axis at an angle of 61.25° to the equilibrium spin axis, which is shown in green.) Yellow markers also have been placed in this 3D scene at each of the coordinate locations specified in the table that accompanies that discussion. From the perspective presented in Figure 3b, we can immediately identify three separate, nearly circular trajectories; the largest one corresponds to our choice of z0 = -0.25, the smallest corresponds to our choice of z0 = -0.60, and the one of intermediate size correspond to our choice of z0 = -0.4310. When viewed from the perspective presented in Figure 1a, we see that these three trajectories define three separate planes; each plane is tipped at an angle of θ = -19.02° to the untilted equatorial, x-y plane of the purple ellipsoid.

Figure 1a Figure 1b

EFE Model b41c385

EFE Model b41c385

file = Dropbox/3Dviewers/AutoRiemann/TypeI/Lagrange/TL15.lagrange.dae

Figure 1c

EFE Model b41c385

file = Dropbox/3Dviewers/RiemannModels/RiemannCalculations.xlsx --- worksheet = TypeI_1b

See Also

  • Related discussions of models viewed from a rotating reference frame:
Tiled Menu

Appendices: | VisTrailsEquations | VisTrailsVariables | References | Ramblings | VisTrailsImages | myphys.lsu | ADS |